

Available online at www.sciencedirect.com

Materials Chemistry and Physics 105 (2007) 298-302

www.elsevier.com/locate/matchemphys

Suppression of anti-ferromagnetism by enhanced solubility of Ni in $Cu_{1-x}Tl_xBa_2Ca_2Cu_{3-y}Ni_yO_{10-\delta}$ (y = 0, 0.5, 1.0, 1.5) superconductor

Nawazish A. Khan*, Najmul Hassan

Materials Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan Received 27 November 2006; received in revised form 25 April 2007; accepted 27 April 2007

Abstract

Enhanced solubility of Ni in CuO₂ planes of Cu_{1-x}Tl_xBa₂Ca₂Cu₃O_{10- $\delta}$} has been observed. The main objective of ferromagnetic Ni substitution in Cu_{1-x}Tl_xBa₂Ca₂Cu₃O_{10- $\delta}$} superconductor at Cu sites was to reduce any possible anti-ferromagnetic order existing in the inner CuO₂ planes (IP); this anti-ferromagnetism is suggested to be suppressing the zero resistivity critical temperature [T_c (R = 0)]. If the anti-ferromagnetic order has some role in bringing about superconductivity at a particular temperature, the doping of ferromagnetic Ni would destroy it and hence the superconductivity. Our studies have shown that the doping of 50% ferromagnetic Ni at Cu sites in CuO₂ planes does not destroy the superconductivity; most likely reasons for the enhanced superconductivity have also been discussed. The increased doping of Ni beyond 50% destroys superconductivity and the final material becomes perfect insulator. These studies have suggested that Ni possibly breaks the anti-ferromagnetism existing in the inner CuO₂ planes, and the critical temperature is not suppressed very much. The post-annealing experiments demonstrated that the magnitude of diamagnetism is enhanced when carriers are optimum in CuO₂ planes. These experiments have contradicted the previous notion of non-uniform doping of inner (IP) and outer planes (OP) as a source of suppression of [T_c (R = 0)] of final compound. These experiments have also manifested that the superconductivity and ferromagnetism can co-exist. © 2007 Elsevier B.V. All rights reserved.

PACS: 74.76.-w; 74.76.Bz; 74.72.-h; 74.72.-Jt

Keywords: Ni doped $Cu_{1-x}Tl_xBa_2Ca_2Cu_{3-y}Ni_yO_{10-\delta}$ (y=0, 0.5, 1.0, 1.5) superconductors; Magnetic materials; Fermi surface; Annealing

1. Introduction

Among the unresolved issues in high T_c cuprates, the most important is the role of anti-ferromagnetism (AF) in the mechanism of superconductivity (SC) in CuO₂ planes, constituting SC-AF-SC alternative layered structure [1,2]. In the unit cell of Cu_{1-x}Tl_xBa₂Ca₂Cu₃O_{10- δ} the two outer-pyramidal CuO₂ planes (OP) have five fold oxygen coordination and an inner CuO₂ (IP) with four fold oxygen coordination [3]. Nuclear magnetic resonance experiments have shown that OP are over-doped and the IP is under-doped with carriers [4–6]. Outer-pyramidal CuO₂ planes have higher carrier density because of their presence in the vicinity of Cu_{1-x}Tl_xBa₂O_{4- δ} charge reservoir layer. The other possible reason could be the formation of antiferromagnetic order in the Cu atoms in the inner CuO₂ plane, which can lower the energy of the carriers tied to it [1,2]. The

* Corresponding author. Tel.: +92 51 2875906.

E-mail address: nawazishalik@yahoo.com (N.A. Khan).

0254-0584/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.matchemphys.2007.04.064

outer planes has a superconductivity around 108 K whereas the inner plane has around 60 K. The question arises whether there is any role of anti-ferromagnetic order suggested to be present in the IP in reducing the T_c (R = 0); the inner planes are suggested to attain this anti-ferromagnetic state due to the deficiency of carriers. In order to settle these outstanding issues we have doped the CuO₂ planes of Cu_{1-x}Tl_xBa₂Ca₂Cu₃O_{10- δ} with ferromagnetic Ni which is expected to break the anti-ferromagnetism existing in the inner-plane. The lower T_c (R=0) of IP would increase if anti-ferromagnetism is broken. In the previous studies Ni²⁺ ion has been found to suppress T_c (R=0) in all the families of high temperature superconductors. It was suggested in these studies that the localized magnetic moment of Ni²⁺ promotes the pair breaking effects which decreases T_c (R=0) [7]. In some other studies, the variation of density of states near the Fermi level is suggested as one of possible reasons for the decrease of T_c (R=0) in the Ni doped compounds [1]. Contrary to all the previous studies [7-16], we have observed marginal suppression of T_c (R=0) by doping Ni at the CuO₂ planar sites. These studies have suggested that ferromagnetic Ni changes the anti-ferromagnetism present in the inner CuO_2 plane and makes the distribution of carriers homogeneous in inner and outer planes; therefore, the critical temperature is not suppressed very much as observed in the previous studies. The most possible source of enhanced superconductivity in Ni doped $Cu_{0.5}Tl_{0.5}Ba_2Ca_2Cu_{1.5}Ni_{1.5}O_{10-\delta}$ system has also been discussed in this article.

2. Experimental

The samples were prepared by solid-state reaction method accomplished in two stages. At the first stage $Cu_{0.5}Ba_2Ca_2Cu_{3-y}Ni_yO_{10-\delta}$ (y=0, 0.5, 1.0, 1.5) precursor material was synthesized using Ba(NO₃)₂, Ca(NO₃)₂, Cu(CN) and Ni(NO₃)₂ as starting compounds. These compounds were mixed in an appropriate ratio in a quartz mortar and pestle. Thoroughly mixed material was fired in air in a quartz boat at 850 °C for 24 h followed by furnace cooling to room temperature. The precursor material was then ground for about an hour and mixed with Tl_2O_3 to give $Cu_{0.5}Tl_{0.5}Ba_2Ca_2Cu_{3-y}Ni_yO_{10-\delta}$ (y = 0, 0.5, 1.0, 1.5) as a final reactants composition. Thallium mixed material was then pelletized under 3.2 tonnes cm⁻² and pellets were wrapped in a gold capsule. Pellet containing gold capsule was heated at 850 °C for 10 min and quenched to room temperature after the heat treatment. The resistivity of the samples was measured by four-probe method and the diamagnetism by ac-susceptibility measurements at lock-in frequency of 270 Hz. The superconductor phase was identified by X-ray diffraction scans (XRD). The post annealing of the samples was carried out in a tubular furnace in flowing N2 or O2 atmosphere.

3. Results and discussion

In Fig. 1 are shown the X-ray diffraction scans of one of the representative Cu_{0.5}Tl_{0.5}Ba₂Ca₂Cu_{1.5}Ni_{1.5}O_{10- δ} sample prepared at 850 °C. Most of the diffraction lines could be indexed according to tetragonal structure following *P4/mmm* space group; the Ni substituted impurities Cu_{0.5}Tl_{0.5}Ba₂CaCuNiO_{10- δ} and Cu_{0.5}Tl_{0.5}Ba₂Ca₃Cu₂ Ni₂O_{10- δ} are also marked in the diffraction scans. The lengths of *a*- and *c*-axes decrease with increased Ni doping in Cu_{0.5}Tl_{0.5}Ba₂Ca₂Cu_{3-y}Ni_yO_{10- δ} (y=0.5, 1.0, 1.5). The variation of axes length with Ni concentration is given in the Table 1.

The resistivity measurements of Ni doped Cu_{0.5}Tl_{0.5}Ba₂Ca₂ Cu_{3-y}Ni_yO_{10- δ} superconductor sample are shown in Fig. 2. Metallic variation of resistivity from room temperature down to onset of superconductivity is a typical feature of these samples. These samples have shown T_c (R = 0) around 95.4, 94.4, 89

Fig. 1. X-ray diffraction pattern of superconductor sample of $Cu_{0.5}Tl_{0.5}$ $Ba_2Ca_2Cu_{1.5}Ni_{1.5}O_{10-\delta}.$

Table 1

Variati	on of	axes	length	with	Ni	content
---------	-------	------	--------	------	----	---------

Ni concentration	a-Axis length (Å)	c-Axis length (Å)	
0.0	3.8294	14.9245	
0.5	3.6978	14.7934	
1.0	3.4996	14.5929	
1.5	3.3632	14.4947	

Fig. 2. Resistivity measurements vs. temperature of $Cu_{0.5}Tl_{0.5}Ba_2$ $Ca_2Cu_{3-\nu}Ni_{\nu}O_{10-\delta}$ (y=0, 0.5, 1.0, 1.5) superconductor samples.

and 90 K for Ni doping concentration of y = 0, 0.5, 1.0 and 1.5, respectively. The higher doping concentration of Ni in CuO₂ planes ($y \ge 2.0$) makes Cu_{0.5}Tl_{0.5}Ba₂Ca₂Cu_{3-y}Ni_yO_{10- δ} samples highly resistive and their resistivity by four-probe method could not be measured. These observations also lead to a conjecture that the superconductivity is destroyed if number of Ni atoms per CuO₂ plane is more than half the number of Cu atoms. The ac-magnetic susceptibility of these samples is shown in Fig. 3. The magnitude of the diamagnetism is decreased with the increased Ni concentration in Cu_{0.5}Tl_{0.5}Ba₂Ca₂Cu_{3-y}Ni_yO_{10- δ}

Fig. 3. ac-Susceptibility measurements vs. temperature of $Cu_{0.5}Tl_{0.5}Ba_2$ $Ca_2Cu_{3-y}Ni_yO_{10-\delta}$ (y=0, 0.5, 1.0, 1.5) superconductor samples.

Download English Version:

https://daneshyari.com/en/article/1527607

Download Persian Version:

https://daneshyari.com/article/1527607

Daneshyari.com