

Available online at www.sciencedirect.com

Materials Chemistry and Physics 105 (2007) 298–302

www.elsevier.com/locate/matchemphys

Suppression of anti-ferromagnetism by enhanced solubility of Ni in Cu_{1−*x*}Tl_{*x*}Ba₂Ca₂Cu_{3−γ}Ni_{*y*}O_{10−δ} (*y* = 0, 0.5, 1.0, 1.5) superconductor

Nawazish A. Khan ∗, Najmul Hassan

Materials Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan Received 27 November 2006; received in revised form 25 April 2007; accepted 27 April 2007

Abstract

Enhanced solubility of Ni in CuO₂ planes of Cu_{1−*x*}Tl_xBa₂Ca₂Cu₃O_{10−δ} has been observed. The main objective of ferromagnetic Ni substitution in $Cu_{1-x}Tl_{x}Ba_{2}Ca_{2}Cu_{3}O_{10-\delta}$ superconductor at Cu sites was to reduce any possible anti-ferromagnetic order existing in the inner CuO₂ planes (IP); this anti-ferromagnetism is suggested to be suppressing the zero resistivity critical temperature $[T_c (R = 0)]$. If the anti-ferromagnetic order has some role in bringing about superconductivity at a particular temperature, the doping of ferromagnetic Ni would destroy it and hence the superconductivity. Our studies have shown that the doping of 50% ferromagnetic Ni at Cu sites in CuO₂ planes does not destroy the superconductivity; most likely reasons for the enhanced superconductivity have also been discussed. The increased doping of Ni beyond 50% destroys superconductivity and the final material becomes perfect insulator. These studies have suggested that Ni possibly breaks the anti-ferromagnetism existing in the inner CuO2 planes, and the critical temperature is not suppressed very much. The post-annealing experiments demonstrated that the magnitude of diamagnetism is enhanced when carriers are optimum in $CuO₂$ planes. These experiments have contradicted the previous notion of non-uniform doping of inner (IP) and outer planes (OP) as a source of suppression of $[T_c (R=0)]$ of final compound. These experiments have also manifested that the superconductivity and ferromagnetism can co-exist. © 2007 Elsevier B.V. All rights reserved.

PACS: 74.76.−w; 74.76.Bz; 74.72.−h; 74.72.−Jt

Keywords: Ni doped Cu_{1−*x*}Tl_{*x*}Ba₂Ca₂Cu_{3−*y*}Ni_{*y*}O_{10−}δ (*y* = 0, 0.5, 1.0, 1.5) superconductors; Magnetic materials; Fermi surface; Annealing

1. Introduction

Among the unresolved issues in high T_c cuprates, the most important is the role of anti-ferromagnetism (AF) in the mechanism of superconductivity (SC) in $CuO₂$ planes, constituting SC-AF-SC alternative layered structure [\[1,2\].](#page--1-0) In the unit cell of Cu1−*x*Tl*x*Ba2Ca2Cu3O10−^δ the two outer-pyramidal CuO2 planes (OP) have five fold oxygen coordination and an inner $CuO₂$ (IP) with four fold oxygen coordination [\[3\]. N](#page--1-0)uclear magnetic resonance experiments have shown that OP are over-doped and the IP is under-doped with carriers [\[4–6\].](#page--1-0) Outer-pyramidal CuO2 planes have higher carrier density because of their presence in the vicinity of $Cu_{1-x}Tl_{x}Ba_{2}O_{4-\delta}$ charge reservoir layer. The other possible reason could be the formation of antiferromagnetic order in the Cu atoms in the inner $CuO₂$ plane, which can lower the energy of the carriers tied to it [\[1,2\].](#page--1-0) The

∗ Corresponding author. Tel.: +92 51 2875906.

E-mail address: nawazishalik@yahoo.com (N.A. Khan).

0254-0584/\$ – see front matter © 2007 Elsevier B.V. All rights reserved. doi[:10.1016/j.matchemphys.2007.04.064](dx.doi.org/10.1016/j.matchemphys.2007.04.064)

outer planes has a superconductivity around 108 K whereas the inner plane has around 60 K. The question arises whether there is any role of anti-ferromagnetic order suggested to be present in the IP in reducing the T_c ($R = 0$); the inner planes are suggested to attain this anti-ferromagnetic state due to the deficiency of carriers. In order to settle these outstanding issues we have doped the CuO₂ planes of Cu_{1−*x*}Tl_{*x*}Ba₂Ca₂Cu₃O_{10−δ} with ferromagnetic Ni which is expected to break the anti-ferromagnetism existing in the inner-plane. The lower T_c ($R=0$) of IP would increase if anti-ferromagnetism is broken. In the previous studies Ni²⁺ ion has been found to suppress T_c ($R=0$) in all the families of high temperature superconductors. It was suggested in these studies that the localized magnetic moment of $Ni²⁺$ promotes the pair breaking effects which decreases T_c ($R = 0$) [\[7\].](#page--1-0) In some other studies, the variation of density of states near the Fermi level is suggested as one of possible reasons for the decrease of T_c ($R=0$) in the Ni doped compounds [\[1\].](#page--1-0) Contrary to all the previous studies [\[7–16\],](#page--1-0) we have observed marginal suppression of T_c ($R=0$) by doping Ni at the CuO₂ planar sites. These studies have suggested that ferromagnetic Ni changes the anti-ferromagnetism present in the inner $CuO₂$ plane and makes the distribution of carriers homogeneous in inner and outer planes; therefore, the critical temperature is not suppressed very much as observed in the previous studies. The most possible source of enhanced superconductivity in Ni doped Cu0.5Tl0.5Ba2Ca2Cu1.5Ni1.5O10−^δ system has also been discussed in this article.

2. Experimental

The samples were prepared by solid-state reaction method accomplished in two stages. At the first stage Cu_{0.5}Ba₂Ca₂Cu_{3−*y*}Ni_{*y*}O_{10−δ} (*y* = 0, 0.5, 1.0, 1.5) precursor material was synthesized using $Ba(NO₃)₂$, $Ca(NO₃)₂$, $Cu(CN)$ and $Ni(NO₃)₂$ as starting compounds. These compounds were mixed in an appropriate ratio in a quartz mortar and pestle. Thoroughly mixed material was fired in air in a quartz boat at 850° C for 24 h followed by furnace cooling to room temperature. The precursor material was then ground for about an hour and mixed with Tl₂O₃ to give Cu_{0.5}Tl_{0.5}Ba₂Ca₂Cu_{3−*y*}Ni_{*y*}O_{10−δ} (*y* = 0, 0.5, 1.0, 1.5) as a final reactants composition. Thallium mixed material was then pelletized under 3.2 tonnes cm−² and pellets were wrapped in a gold capsule. Pellet containing gold capsule was heated at 850° C for 10 min and quenched to room temperature after the heat treatment. The resistivity of the samples was measured by four-probe method and the diamagnetism by ac-susceptibility measurements at lock-in frequency of 270 Hz. The superconductor phase was identified by X-ray diffraction scans (XRD). The post annealing of the samples was carried out in a tubular furnace in flowing N_2 or O_2 atmosphere.

3. Results and discussion

In Fig. 1 are shown the X-ray diffraction scans of one of the representative $Cu_{0.5}Tl_{0.5}Ba₂Ca₂Cu_{1.5}Ni_{1.5}O_{10- δ}$ sample prepared at 850° C. Most of the diffraction lines could be indexed according to tetragonal structure following *P*4/*mmm* space group; the Ni substituted impurities $Cu_{0.5}Tl_{0.5}Ba₂CaCuNiO_{10−δ}$ and $Cu_{0.5}Tl_{0.5}Ba₂Ca₃Cu₂$ Ni₂O_{10−δ} are also marked in the diffraction scans. The lengths of *a*- and *c*-axes decrease with increased Ni doping in Cu0.5Tl0.5Ba2Ca2Cu3−*y*Ni*y*O10−^δ (*y* = 0.5, 1.0, 1.5). The variation of axes length with Ni concentration is given in the Table 1.

The resistivity measurements of Ni doped $Cu_{0.5}Ti_{0.5}Ba₂Ca₂$ Cu3−*y*Ni*y*O10−^δ superconductor sample are shown in Fig. 2. Metallic variation of resistivity from room temperature down to onset of superconductivity is a typical feature of these samples. These samples have shown T_c ($R = 0$) around 95.4, 94.4, 89

Fig. 1. X-ray diffraction pattern of superconductor sample of $Cu_{0.5}T_{0.5}$ $Ba_2Ca_2Cu_{1.5}Ni_{1.5}O_{10-\delta}$.

Table 1

Variation of axes length with Ni content	
--	--

Fig. 2. Resistivity measurements vs. temperature of $Cu_{0.5}T_{0.5}Ba₂$ Ca2Cu3−*y*Ni*y*O10−^δ (*y* = 0, 0.5, 1.0, 1.5) superconductor samples.

and 90 K for Ni doping concentration of $v = 0$, 0.5, 1.0 and 1.5, respectively. The higher doping concentration of Ni in $CuO₂$ planes ($y \ge 2.0$) makes Cu_{0.5}Tl_{0.5}Ba₂Ca₂Cu_{3−*y*}Ni_{*y*}O_{10−δ} samples highly resistive and their resistivity by four-probe method could not be measured. These observations also lead to a conjecture that the superconductivity is destroyed if number of Ni atoms per $CuO₂$ plane is more than half the number of Cu atoms. The ac-magnetic susceptibility of these samples is shown in Fig. 3. The magnitude of the diamagnetism is decreased with the increased Ni concentration in Cu0.5Tl0.5Ba2Ca2Cu3−*y*Ni*y*O10−^δ

Fig. 3. ac-Susceptibility measurements vs. temperature of $Cu_{0.5}Ti_{0.5}Ba₂$ Ca₂Cu_{3−*y*}Ni_{*y*}O_{10−δ} (*y* = 0, 0.5, 1.0, 1.5) superconductor samples.

Download English Version:

<https://daneshyari.com/en/article/1527607>

Download Persian Version:

<https://daneshyari.com/article/1527607>

[Daneshyari.com](https://daneshyari.com)