Contents lists available at ScienceDirect

Materials Science and Engineering B

journal homepage: www.elsevier.com/locate/mseb

Short communication

A novel high color purity blue-emitting phosphor: CaBi₂B₂O₇:Tm³⁺

Jiangong Li^{a,*}, Huifang Yan^b, Fengmei Yan^c

^a Department of Electronic Science and Engineering, Huanghuai University, Zhumadian 463000, China

^b Department of Foreign Languages and Literature, Huanghuai University, Zhumadian 463000, China

^c Department of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000, China

ARTICLE INFO

ABSTRACT

Article history: Received 15 December 2015 Received in revised form 22 February 2016 Accepted 17 March 2016 Available online 30 March 2016

Keywords: Phosphor Photoluminescence Borate Tm³⁺ purity were prepared by solid-state reaction method. The crystal structure and luminescence properties of the as-prepared phosphors were studied. This phosphor shows a satisfactory blue performance (peak at 453 nm) due to the ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$ transition of Tm³⁺ excited by 357 nm light. Investigation of Tm³⁺ content dependent emission spectra indicates that x = 0.04 is the optimum doping content of Tm³⁺ ions in the CaBi₂B₂O₇ host. The critical distance and the concentration quenching mechanism were also investigated. In particular, the color purity of as prepared sample was analyzed and the result shows that the color purity of CaBi₂B₂O₇:Tm³⁺ is higher than the commercial blue phosphor BaMgAl₁₀O₁₇:Eu²⁺ (BAM:Eu²⁺) and the latest reported Tm³⁺ doped blue phosphors. The present work suggests that the CaBi₂B₂O₇:Tm³⁺ phosphor is a potential blue-emitting candidate for the application in the near-UV WLEDs.

A series of Tm^{3+} -doped $CaBi_{2-x}B_2O_7$: xTm^{3+} (0.02 $\le x \le 0.12$) blue-emitting phosphors with high color

1. Introduction

Currently, trivalent aldebaranium (Tm³⁺) rare-earth ion as an important activator of blue luminescence materials has drawn great attention for the applications in the white light emitting diodes (WLEDs) and field-emission display (FED) devices [1–4]. For example, NaBaBO₃:Tm³⁺ and Sr₂B₂O₅:Tm³⁺ have been proposed as a promising candidate as blue-emitting for the near-ultraviolet (near-UV) pumped WLEDs [5,6]. And an efficient La₂O₃:Tm³⁺ phosphor was reported and shows excellent performance in the FED application [6]. In general, Tm³⁺ doped inorganic compounds always feature satisfying blue-emitting performance due to their blue transition of ¹D₂ \rightarrow ³F₄ under near-UV light excitation [7–9]. Hence, it is important to investigate the novel Tm³⁺ doped phosphors for possible applications in the industry especially in the solid state lighting area.

Rare earth doped borate phosphors have been widely investigated in the application in the near-UV WLEDs for their superiorities of a low synthesis temperature, good chemical and physical stability [10–15]. The investigations in Tm³⁺ doped borate phosphors were emerged in large numbers in recent years, such as NaBaBO₃:Tm³⁺, Sr₂B₂O₉Cl:Tm³⁺ and Sr₂B₂O₅:Tm³⁺ [5,6,16]. Kargin et al. firstly published that the crystal structure of CaBi₂B₂O₇ single

http://dx.doi.org/10.1016/j.mseb.2016.03.004 0921-5107/© 2016 Elsevier B.V. All rights reserved. phase of an orthorhombic structure with a space group of Pna (21) in 2008, and the corresponding lattice parameters is a = 8.937 Å, b = 5.477 Å, c = 12.591 Å and V = 616.33 Å³ [17]. However, to the best of our knowledge, there is no study on the luminescent properties of rare earth doped CaBi₂B₂O₇ phosphors except the investigation on the luminescent properties of Eu³⁺ doped CaBi₂B₂O₇: in our previous work [18].

In this paper, we synthesized a novel blue emitting phosphor $CaBi_2B_2O_7:Tm^{3+}$ by solid state reaction method. Its crystal structure, crystal morphology, luminescence properties of $CaBi_2B_2O_7:Tm^{3+}$ were investigated. The critical distance, concentration quenching mechanism and color purity performance were also investigated in detail.

2. Experimental

In the Tm³⁺ ions doped CaBi₂B₂O₇ system, the coordinate number (CN) of Bi³⁺ and Ca²⁺ is 6 [15]. The ionic radii of Tm³⁺, Ca²⁺, Bi³⁺ is 0.88, 1.00 and 1.03 Å for CN = 6, respectively [19]. Although the ionic radii of Bi³⁺ and Ca²⁺ are almost the same, we believe that Tm³⁺ could replace the Bi³⁺ due to the matched charge of two ions. Hence, the samples with formula CaBi_{2-x}B₂O₇:*x*Tm³⁺ (*x*=0, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10 and 0.12) were prepared by solid state reactions at a high temperature. CaCO₃ (analytical reagent grade), Bi₂O₃ (analytical reagent grade), H₃BO₃ (analytical reagent grade) and Tm₂O₃ (99.99% purity) were used as starting materials. The stoichiometric materials were weighted and ground together

CrossMark

^{*} Corresponding author. Tel.: +86 396 2853410. E-mail addresses: lijiangong01@gmail.com, lijiangong888@163.com (J. Li).

in an agate mortar (the amount of H_3BO_3 was added in excess about 5% to compensate its evaporation losses during the high temperature synthesis process.). Thereafter, the mixture was transferred to a corundum crucible and precalcined at 400 °C for 1 h, and then subsequently further sintered at 800 °C for 3 h in the air atmosphere.

The purities of samples were tested by X-ray diffraction (XRD) patterns using Rigaku Ultima IV Advanced X-ray diffractometer with a Cu K α (40.0 KV, 30.0 mA) radiation (λ = 1.5418 Å). A scan rate of 6°/min was applied to record the patterns in the 2 θ range of 10°–60°. The crystal size and the crystal morphology of prepared samples were observed by Hitachi S-4800 scanning electron microscope (SEM). Photoluminescence excitation (PLE) and emission (PL) spectra were measured by Hitachi F-4600 spectrofluorometer equipped with a 150 W Xenon lamp as an excitation source. All the measurements were performed at room temperature.

3. Results and discussion

The XRD patterns of $CaBi_{2-x}B_2O_7:xTm^{3+}$ (*x* = 0, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10 and 0.12) samples are show in Fig. 1(a). It can be observed that all of the diffraction peaks from the CaBi₂B₂O₇ and Tm³⁺ doped CaBi₂B₂O₇ samples can be well indexed to the standard card ICSD#245016, consistent with a CaBi₂B₂O₇ phase of above mentioned orthorhombic structure with a space group of Pna (21) and lattice parameters of a = 8.937 Å, b = 5.477 Å, c = 12.591 Å and $V = 616.33 \text{ Å}^3$ (the detailed crystal structure of CaBi₂B₂O₇ is shown in Fig. 2). Moreover, the zoomed XRD patterns of all samples recorded in the 2θ ranging from 33.5° to 35° . It can be found that the diffraction angle of (120) diffraction peak shifted slightly to a higher angle when Tm³⁺ ions content increases. The phenomena can be explained that the ionic radii of Tm^{3+} ion (CN = 6, r = 0.880 Å³) is smaller than the ionic radii of Bi^{3+} ion (CN = 6, $r = 0.103 \text{ Å}^3$) and cause the shrinkage of crystal distortion of CaBi₂B₂O₇:Tm³⁺ when the content of Tm³⁺ ions increases. The results confirm that Tm³⁺ ions have successfully substituted Bi³⁺ ions.

To investigate the crystal size and the crystal morphology, Fig. 3 illustrates the SEM image of a typical CaBi_{1.96}B₂O₇:0.04Tm³⁺ sample. One can see that the typical sample shows the irregular powder size and morphology structure. The average grain size of CaBi_{1.96}B₂O₇:0.04Tm³⁺ sample are about 2–8 μ m. The experimental result indicates that the obtained sample shows a good crystallinity and the grain size is a suitable candidate for the application in the solid state lighting application.

Fig. 1. (a) XRD patterns of CaBi_{2-x}B₂O₇:xTm³⁺ (x=0,0.02,0.03,0.04,0.05,0.06,0.08,0.10 and 0.12) samples (the standard data card ICSD#245016 for CaBi₂B₂O₇ is provided as a reference). (b) Zoomed XRD patterns of all samples recorded in the 2 θ ranging from 33.5° to 35.0°.

Fig. 2. Crystal structure of the CaBi₂B₂O₇ host.

Fig. 3. SEM image of a typical CaBi_{1.96}B₂O₇:0.04Tm³⁺ sample.

The excitation spectrum monitored at 453 nm of typical sample CaBi_{1.96}B₂O₇:0.04Tm³⁺ is shown in Fig. 4 curve 1. It can be found that the excitation spectrum dominate at 357 nm, which is assigned to the typical 4f–4f transition of Tm³⁺ from ground state ³H₆ to excited state ¹D₂ [20]. Fig. 4 curve 2 depicts the emission

Fig. 4. Excitation spectrum (λ_{em} = 453 nm) and emission spectrum (λ_{ex} = 357 nm) of CaBi_{1.96}B₂O₇:0.04Tm³⁺ phosphor.

Download English Version:

https://daneshyari.com/en/article/1528384

Download Persian Version:

https://daneshyari.com/article/1528384

Daneshyari.com