Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mseb

CrossMark

Effect of V₂O₅ on microwave dielectric properties of non-stoichiometric MgTiO₃ ceramics

T. Santhosh Kumar, D. Pamu*

Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India

ARTICLE INFO

ABSTRACT

Article history: Received 22 September 2014 Received in revised form 31 December 2014 Accepted 13 January 2015 Available online 23 January 2015

Keywords: Microwave ceramics Dielectric loss Liquid phase sintering Reitveld refinement We report the effect of V₂O₅ addition on crystal structure, microstructure and microwave dielectric properties of non-stoichiometric MgTiO₃ (Mg_{1+δ}TiO_{3+δ}, where δ is excess MgO concentration) ceramics. The structural studies reveal that sample with δ = 0.07 exhibits a single phase MgTiO₃ and secondary phase of MgTi₂O₅ (Mg₂TiO₄) for below (above) the δ = 0.07 composition. The optimum microwave dielectric properties of $\varepsilon_r \sim 17.68$, $Q \times f_0 \sim 161$ THz at 9.4 GHz are obtained for δ = 0.07, sintered at 1350 °C for 3 h. The improvement in loss is attributed to the improvement in uniform grain growth and suppression of secondary phases. V₂O₅ addition significantly lowered the sintering temperature of Mg_{1.07}TiO_{3.07} to 1100 °C, which is due to the formation of liquid phase. The XRD analysis reveals that V₂O₅ forms a solid solution with MTO. A good combination of $\varepsilon_r \sim 15.8$ and $Q \times f_0$ of 85.6 THz at 9.3 GHz are obtained for 0.5 wt% V₂O₅ added Mg_{1.07}TiO_{3.07}.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent days, due to rapid development in microwave communication technology, the microwave ceramics have been studied extensively. Microwave ceramics are used in various applications such as resonators, filters, oscillators and antennas in microwave communication devices. Furthermore, for the miniaturization of microwave devices, low-temperature co-fired ceramics (LTCC) have been widely investigated [1-4]. The components of the above microwave devices are made up of high dielectric constant (ε_r), low loss (high $Q \times f_0$) and a small temperature coefficient of resonant frequencies (τ_f) which are needed for enhanced functionality and better reliability [5]. However, most of the commercial microwave ceramics need very high sintering temperatures to enhance the density; this will increase the manufacturing cost. Also, Ag has been chosen as the conducting material to minimize the microwave absorption loss which melts around 980 °C. In order to use Ag as an electrode, the processing temperature of the microwave material needs to be brought down to this temperature range [6]. Generally, three different methods are used to reduce the sintering temperature of microwave ceramics; low-melting glassy additive [7], chemical methods [8] and smaller initial particle sizes [9]. Among

http://dx.doi.org/10.1016/j.mseb.2015.01.003 0921-5107/© 2015 Elsevier B.V. All rights reserved. the above techniques low-melting glassy additive is a cost-effective technique.

V₂O₅ is a well-known flux former at low temperatures and also acts as an oxygen donor, and hence it is chosen as a sintering aid [10]. Further, due to the hygroscopic nature of the MgO, it is difficult to synthesize the pure MgTiO₃ without additional phases Mg₂TiO₄ and MgTi₂O₅ by conventional solid-state reaction method [11]. Non-stoichiometric effect for various compounds has been reported by Belous et al. [12,13]. However, the influence of excess Mg on MTO ceramics to get a pure single phase and addition of V₂O₅ to the non-stoichiometric MTO has not been studied systematically. Hence, in the present study the non-stoichiometric $Mg_{1+\delta}TiO_{3+\delta}$ was prepared using conventional solid-state reaction method. The best composition which formed single phase MgTiO₃ was chosen and different wt% of V_2O_5 (x=0.0-1.5 wt%) is added. The effect of V₂O₅ addition on crystal structure, microstructure and microwave dielectric properties of non-stoichiometric MTO ceramics is discussed. Furthermore, in both the cases, dielectric loss mechanisms were discussed, and the obtained results were compared with the earlier reports.

2. Experimental details

Samples with compositions $Mg_{1+\delta}TiO_{3+\delta}$ (δ = 0, 0.05, 0.07, 0.10 and 0.15) in the magnesium titanate system were prepared using solid state reaction method. MgO (Sigma–Aldrich 99.99%) and TiO₂ (Sigma–Aldrich 99.99%, USA) compounds were used for

^{*} Corresponding author. Tel.: +91 3612582721. *E-mail address:* pamu@iitg.ernet.in (D. Pamu).

preparation of these samples. The stoichiometry amounts of $Mg_{1+\delta}TiO_{3+\delta}$ compounds were weighed and mixed in a planetary ball mill (Fritsch GmbH, Germany) for 5 h using tungsten carbide vial and distilled water as milling medium. The prepared mixtures were dried and calcined at 1100 °C for 2 h. The calcined powders were re-milled for 10 h to reduce the particle size. The powders were added with an organic binder (PVA) and pressed into pellets with 10 mm in diameter and 4–5 mm in thickness under a pressure of 2000 kg/cm² isostatically. The pellets were subsequently sintered at 1200–1400 °C for 3 h in air.

From the above compounds, the best composition has been identified $(Mg_{1.07}TiO_{3.07})$ for further studies. After calcination $Mg_{1.07}TiO_{3.07}$ powders were re-milled with an inclusion of 0.5, 1.0 and 1.5 wt% of V_2O_5 (Sigma–Aldrich, USA) and pressed into pellets. The pellets were sintered in the temperature range of 1050–1200 °C for 3 h in air at a heating rate of 10 °C/min. A soak time of 30 min at 600 °C is given while heating to expel the binder. After sintering, the samples were cooled down to room temperature at a rate of 1 °C/min.

The phase purities of sintered $Mg_{1+\delta}TiO_{3+\delta}$ and V_2O_5 (x=0.0-1.5 wt%) added ceramics were examined by recording the XRD patterns using X-ray diffractometer (Rigaku TTRAX-III) with CuK_{α} radiation (λ = 1.5406 Å). XRD patterns of 1.5 wt% V₂O₅ added Mg_{1.07}TiO_{3.07} ceramics, sintered at different sintering temperatures were recorded using X-ray diffractometer (Seifert 3003 TT) with CuK_{α} radiation (λ = 1.5406 Å). The surface morphology of sintered samples was observed by scanning electron microscope (Leo 1430 vp) and chemical composition was studied with energy dispersive spectroscopy (EDS). The relative densities of the sintered specimens were measured by the Archimedes's method. The dielectric constant (ε_r) and guality factors (0) of the samples at microwave frequencies were measured using the Hakki and Coleman dielectric resonator method, as modified and improved by Courtney [14,15]. Krupka resonant cavity oscillating in TE₀₁₆ mode was connected with Vector Network Analyzer (VNA, Rohde & Schwarz, Model No.: ZVA24) has been used to measure the dielectric properties of the prepared ceramics.

3. Results and discussions

3.1. Crystal structure

Fig. 1(a) shows the X-ray diffraction patterns of excess mol concentration of MgO (δ =0, 0.05, 0.07, 0.1 and 0.15) doped in MgTiO₃ ceramics sintered at 1350 °C. It is found that all the samples exhibited rhombohedral MgTiO₃ as a main crystalline phase (ICCD: 06-0464). For δ =0 sample, along with MgTiO₃ a small amount of MgTi₂O₅ secondary phase is also observed. MgTi₂O₅ is usually formed as a secondary phase along with MgTiO₃, when prepared using solid-state reaction method [16].

The secondary phase peak intensity is suppressed with an increase in δ concentration and at a critical concentration of $\delta = 0.07$ sample exhibiting a pure MgTiO₃ phase. With the increase in the δ beyond 0.07, a presence of Mg₂TiO₄ phase is observed along with MgTiO₃, and the intensity of Mg₂TiO₄ is improved with a further increase in δ . The magnified views of the secondary phase in XRD patterns are shown in Fig. 1(b). The presence of MgTi₂O₅ subordinate phase at $\delta = 0$ may be due to the high hygroscopic nature of MgO, which absorbs moisture from the environment gives rise to deficiency in stoichiometry. From these results, one can conclude that excess MgO concentration plays a significant role on the formation of phase pure MgTiO₃ caramics. Similar results were observed in the case of MgTiO₃ samples prepared from MgCO₃.0.2708 H₂O as initial powder [17]. Furthermore, the presence of MgTi₂O₅ ($\varepsilon_r \sim 17.4$, $Q \times f_0 \sim 47$, 000 GHz, $\tau_f \sim -66$ ppm/°C)

Table 1

Lattice parameters of $Mg_{1.07}TiO_{3.07} + x wt\%$ of V_2O_5 obtained from the Reitveld refinement.

Composition in <i>x</i> (wt%)	a=b (Å)	<i>c</i> (Å)
0.0	5.0539 (20)	13.8954 (15)
0.5	5.0539 (21)	13.8940 (29)
1.0	5.0535 (18)	13.8933 (27)
1.5	5.0533 (23)	13.8923 (32)

Table 2

The EDS spectra results of $\delta = 0$ and $\delta = 0.15$ doped Mg_{1+ δ}TiO_{3+ δ} samples, sintered at 1350 °C.

Spot	Atom (%)		
	Mg (K)	Ti (K)	O (K)
		()	- ()
For $\delta = 0$			
A	19.94	19.84	60.23
В	12.71	23.93	64.51
For S = 0.1F			
r01 0 - 0.15			
A	17.48	19.48	60.61
В	28.33	14.21	57.46

[18] and Mg₂TiO₄ ($\varepsilon_r \sim 14$, $Q \times f_0 \sim 150$, 000 GHz, $\tau_f \sim -50$ ppm/°C) [19] are expected to influence the microwave dielectric properties of MTO ceramics significantly. The composition with $\delta = 0.07$ is considered for the further study owing to the formation of phase pure MTO ceramics.

Fig. 1(c) shows the XRD patterns of $Mg_{1.07}$ TiO_{3.07} (considered as a pure MTO with single phase for the addition of V_2O_5) composition added with different amounts of V_2O_5 (x=0.0-1.5 wt%) sintered at 1100 °C for 3 h. It is observed that all the samples exhibited a rhombohedral MgTiO₃ phase without any secondary phase. To see the influence of V_2O_5 addition on crystal structure on $Mg_{1.07}$ TiO_{3.07} samples, all the samples are refined by considering a rhombohedral $R\overline{3}$ space group. The Rietveld refinement of $Mg_{1.07}$ TiO_{3.07} samples added with different wt% of V_2O_5 are shown in Fig. 2.

The lattice parameters are calculated and were summarized in Table 1. The lattice parameters are found to decrease with the addition of V₂O₅ addition, and this indicates that V₂O₅ forms a solid solution with Mg_{1.07}TiO_{3.07}. This can be explained as follows: V⁺⁵ can be substituted for tetravalent ions in Mg_{1.07}TiO_{3.07}, because the ionic radii of V⁵⁺ (0.54 Å) is smaller than Ti^{4+} (0.605 Å) in coordination number 6 [20,21]. Further, as the *x* wt% increases, the volume of the unit cell decreases, this shows that V⁵⁺ has entered into the MTO lattice. The XRD patterns of the 1.5 wt% V₂O₅ added Mg_{1.07}TiO_{3.07}, ceramics sintered at different sintering temperature is shown in Fig. 1(d). All the samples exhibit single phase MgTiO₃ phase and the formation of secondary phases is not observed with increasing sintering temperature up to 1150 °C.

3.2. Microstructure

The SEM images of $Mg_{1+\delta}TiO_{3+\delta}$ ceramics with different concentration of MgO (δ) doped samples sintered at 1350 °C are shown in Fig. 3. The sample revealed a porous and non – uniform microstructure for δ =0 sample. Furthermore, small rods like grains are observed at grain boundary of larger grains, with an average grain size of 3.2 µm. An EDS analysis is performed to investigate the chemical composition of these grains, and the results were enlisted in Table 2. From the EDS spectra, the larger (spot A) and tiny grains (spot B) are confirmed as MgTiO₃ and MgTi₂O₅, respectively. Whereas a uniform grain growth and improved grain size are observed with an increase in δ up to δ =0.07 (Fig. 3(b) and (c)). The average grain size of 9.1 and 10.2 µm is observed for δ =0.05 and δ =0.07 samples, respectively. Further, increase in MgO (i.e., δ =0.15), porous grain morphology and two Download English Version:

https://daneshyari.com/en/article/1528644

Download Persian Version:

https://daneshyari.com/article/1528644

Daneshyari.com