
Computational Biology and Chemistry 34 (2010) 328–333

Contents lists available at ScienceDirect

Computational Biology and Chemistry

journa l homepage: www.e lsev ier .com/ locate /compbio lchem

Brief communication

Computation of mutual information from Hidden Markov Models

Daniel Rekera,b, Stefan Katzenbeisserb, Kay Hamachera,∗

a Theoretical Biology and Bioinformatics, Institute of Microbiology and Genetics, Department of Biology, TU Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
b Security Engineering Group, Department of Computer Science, Technische Universitãt Darmstadt, 64287 Darmstadt, Germany

a r t i c l e i n f o

Article history:
Received 29 June 2010
Received in revised form 30 August 2010
Accepted 30 August 2010

Keywords:
Hidden Markov Model
Mutual information
Dynamic
Programming
Co-evolutionary signals

a b s t r a c t

Understanding evolution at the sequence level is one of the major research visions of bioinformatics. To
this end, several abstract models – such as Hidden Markov Models – and several quantitative measures –
such as the mutual information – have been introduced, thoroughly investigated, and applied to several
concrete studies in molecular biology. With this contribution we want to undertake a first step to merge
these approaches (models and measures) for easy and immediate computation, e.g. for a database of
a large number of externally fitted models (such as PFAM). Being able to compute such measures is of
paramount importance in data mining, model development, and model comparison. Here we describe
how one can efficiently compute the mutual information of a homogenous Hidden Markov Model orders
of magnitude faster than with a naive, straight-forward approach. In addition, our algorithm avoids
sampling issues of real-world sequences, thus allowing for direct comparison of various models. We
applied the method to genomic sequences and discuss properties as well as convergence issues.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary pressure enforces correlations in biological
sequences. A particularly promising method to reveal the presence
of such (co-)evolutionary signals and to investigate general infor-
mation contained within biological data sets is the computation of
the mutual information (MI) between different positions, e.g. in a
set of strings of biological codes. The co-evolution of amino acids
in a protein, for example, reveals itself by high MI content in a set
of homologous sequences from various taxa. MI based studies have
become an important tool to understand evolutionary processes in
such gene products (Boba et al., 2010; Hamacher, 2008, 2010; Weil
et al., 2009).

At the same time, biological sequences are routinely modeled
in bioinformatics by Hidden Markov Models (HMM) (Durbin et al.,
1998) and large databases of (manually) curated models exist (Finn
et al., 2006). Besides these applications in evolutionary and compu-
tational biology, signal creating processes in neurobiology, speech
synthesis (Dines and Sridharan, 2001; Zen et al., 2007) or biochem-
istry (Grundy et al., 1997) are frequently modeled by HMMs, too.
Such HMMs capture the essentials of the consensus sequence as
well as additional “fluctuations” in the individual sequences.

Due to their widespread usage and the importance of evolu-
tionary signals, understanding the ability of HMMs to model the
underlying correlation in sequences is of great importance. One has

∗ Corresponding author. Tel.: +49 6151 16 5318; fax: +49 6151 16 2956.
E-mail address: kay.hamacher@gmail.com (K. Hamacher).

also to concede that HMMs themselves – in particular as a plain
collection of probability values – are not instructive at all. They
do not provide immediate insight into the non-local effects in the
sequences under investigation. The MI on the other hand offers a
direct, intuitive, and transmissible interpretation; in particular one
can easily visualize it (Bremm et al., 2010).

A generic framework based on an analytical approach to com-
pute MI from HMMs directly is desirable. Such a framework avoids
problems of empirical data sets with finite size. The naive approach
of computing MI from sequences emitted by an HMM would typ-
ically be subject to statistical fluctuations (Weil et al., 2009). In
particular, this offers the possibility to use the existing biological
knowledge and machine readable information in the form of HMMs
in an automated fashion (Stiller and Radons, 1999).

From the algorithmic point of view the MI computation from
HMMs poses an interesting problem as one needs to find an algo-
rithm to efficiently compute the combinatorial many paths through
the state space of an HMM.

For all of the above mentioned practical and theoretical argu-
ments we want to show in this paper how to compute the MI for
(homogeneous) HMMs efficiently. The investigation of homoge-
neous HMMs is a first step in our final goal of mining general HMM
databases for co-evolutionary signals. PFAM models (Finn et al.,
2006), for example, model C- and N-termini of proteins by homo-
geneous sites in the respective HMM. Therefore we present here a
first step to finally compute MI of HMMER models.

In particular the finding of functional motifs by HMMs can
be facilitated by filtering for information rich regions (Horan et
al., 2010). Our results provide for alternative insight into the

1476-9271/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compbiolchem.2010.08.005

dx.doi.org/10.1016/j.compbiolchem.2010.08.005
http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
mailto:kay.hamacher@gmail.com
dx.doi.org/10.1016/j.compbiolchem.2010.08.005

D. Reker et al. / Computational Biology and Chemistry 34 (2010) 328–333 329

Fig. 1. The structure of a general Hidden Markov Model (HMM) with the emission
probabilities P(�� |x�) and the transition probabilities P(x�+1|x�).

information contained within HMMs and might therefore open an
alternative route to such guided protocols.

2. Approach

2.1. Mutual information in sequences

Let � := {�1,. . .,�m} be the set of the m observed symbols in a
biological sequence data set. We consider our data to be strings
of these symbols with length �end ∈N. A position in the string can
therefore be referenced by any number � ∈ {1, 2, . . . , �end} =: T ⊂
N. The MI between two positions �,� ′ ∈ T in symbol sequences can
be calculated by

MI�,�′ =
∑

�� ,�′
�′ ∈
∑P(��, � ′

�′) · log2
P(��, � ′

�′)
P(��), P(� ′

�′)
, (1)

where P(��) is the probability to observe the symbol �� ∈ � at posi-
tion � ∈ T and P(��, � ′

�) is the joint probability to observe symbol
�� ∈ � at position � ∈ T and symbol � ′

�′ ∈
∑

at position � ′ ∈ T. Typi-
cally, these probabilities are estimated using frequencies of symbol
occurrence in an empirical data set. We will show how to compute
the probabilities directly from a given HMM.

2.2. Definition of Hidden Markov Models

We will consider a time-discrete, time-homogeneous HMM
shown in Fig. 1 up to a string length of �end. For such HMMs we
define � :={x1, . . ., xn} to be the set of the n hidden states of our
HMM. It is described by three probability functions (Eddy, 1995):

• P(�� |x�) :
∑

×� → R, which is the emission probability for a cer-
tain symbol �� ∈ � conditioned on an internal state x� ∈ � at a
position �. As we use homogeneous HMMs, the emission prob-
ability for any hidden state does not depend on its position,
rendering P(�� > x�) to be �-independent and a universal table.

• P(x�+1|x′
�′) : � × � → R, which reflects the transition probability

into a hidden state x� ∈ � from a state �′
�′ ∈ � at position � ′. Again,

because of the time homogeneity of our model, these probabili-
ties do not change with � and need only to be defined for � ′ = � + 1
due the Markov property employed in HMMs.

• �(x) : � → R, which represents the starting probabilities at the
(virtual) starting position � = 0.

To calculate MI from the HMM we need to find a way to calculate
the values of P(��, � ′

�) and P(��) for any ��, � ′
�′ ∈
∑

and for any
�,� ′ ∈ T with the help of the given probability functions.

2.3. An analytic solution

In the following we will only consider the case � < � ′. The case
� > � ′ is symmetric to � < � ′ in Eq. (1) due to the symmetry in joint
probabilities. The case � = � ′ leads to the entropy for position � and is
not relevant for our investigation. To calculate P(��, � ′

�) and P(��),
we use the probability P(x�) to be in a certain hidden state x� ∈ �

for a given � ∈ T and the joint probability P(x� |x′
�′) to be in hidden

state x� ∈ � for a given � ∈ T and in hidden state �′
�′ ∈ � for a given

� ′ ∈ T:

P(��) =
∑
x� ∈ �

P(�� |x�)P(x�) (2)

P(��� ′
�′) =

∑
x� ,x′

�′ ∈ �

P(�� |x�)P(� ′
�′ |x′

�′)P(x� |x′
�′). (3)

Therefore the computation of the MI reduces to the determi-
nation of P(x� |x′

�′) for every xt, �′
�′ ∈ � and �,� ′ ∈ T with � < � ′ and

the probabilities in Eqs. (2) and (3). The joint probability can be
obtained using

P(x� |x′
�′) = P(x′

�′ |x�)P(x�). (4)

We use the Markov property and the law of alternatives to eval-
uate the conditional probability P(x′

�′ |x�) as

P(x′
�′ |x�) =

∑
x′′

�′−1
∈ �

P(x′
�′ |x′′

�′−1)P(x′′
�′−1|x�). (5)

This equation can be used to build a recursive formula for the
joint probability (4) for � < � ′:

P(x�, x′
�′) =

∑
x′′

�′−1
∈ �

P(x′
�′ |x′′

�′−1)P(x�, x′′
�′−1). (6)

Implementing this formula, we can calculate the required values
of P(x� |x′

�′) iteratively. Thereby, we use the values of P(x� |x′
�′) for

every �′
�′ ∈ � to calculate P(x� |x′′

�′+1) for any �′′
�′+1 ∈ �.

2.4. Dynamic programming

The computation of P(x� |x′′
�′+1) can be performed efficiently

following a dynamic programming approach (Bellman, 1952). To
this end we express the sum in (6) as a matrix multiplication.
Let A� :=(P(x�+1|x′

�))x�+1, x′
� ∈ � be the matrix containing all transi-

tion probabilities for position �. As we use a homogeneous HMM
these matrices are the same for all � ∈ T, which we will simply call
A. With the matrix A we compute matrices (P(x�, x′

�′))x� ,x′
�′ ∈ �

=:

X�,�′ ∈R|�|×|�| for all �,� ′ ∈ T with � ≤ � ′. These matrices will contain
all required values and can simply be calculated by:

Xt,t′ = A · Xt,t′−1 (7)

for � < � ′. With the help of this equation we can calculate all X�,�′
for � < � ′ iteratively as long as we know X�,� .

X1,1 is simply initialized with

X1,1:=diag(�(x1), �(x2), . . . , �(xn)). (8)

To compute X�,� for � ∈ T,1 < � we can use the values of X�−1,�
and the law of alternatives to compute X�,� as

X�,� = diag

(∑
i ∈ {1,...,n}

X�−1,�[i, 1], . . . ,
∑

i ∈ {1,...,n}
X�−1,�[i, n]

)
(9)

with X�,�′ [i,j] being the element in the i-th row and the j-th column
of the matrix X�,�′ . We can therefore simply collapse the columns
of X�−1,� to calculate X�,� . Using these equations we can calculate
the required values of P(x� |x′

�′) by first initializing X1,1 and then
successively calculating X1,� for all � ∈ {2,. . .,�end}. After one step
of this calculation, we obtain X1,2 with which we can calculate X2,2.
Using X2,2 we can then successively calculate X2,� for � ∈ {3,. . .,�end}
and so on. After having calculated all necessary X�,�′ , P(��, � ′

�) and
P(��) can be calculated with help of (2) and (3). Again, these sums
are expressible in matrix–vector multiplication which enables fast

Download	English	Version:

https://daneshyari.com/en/article/15289

Download	Persian	Version:

https://daneshyari.com/article/15289

Daneshyari.com

https://daneshyari.com/en/article/15289
https://daneshyari.com/article/15289
https://daneshyari.com/

