ELSEVIER

Contents lists available at SciVerse ScienceDirect

Materials Science and Engineering B

journal homepage: www.elsevier.com/locate/mseb

Short communication

Influence of Zn²⁺ and Si⁴⁺ codoping on luminescence properties of CaWO₄:Eu³⁺ phosphor

Fengwen Kang^a, Yihua Hu^{a,*}, Li Chen^a, Xiaojuan Wang^a, Haoyi Wu^b

- a School of Physics and Optoelectronic Engineering, Guangdong University of Technology, WaiHuan Xi Road, No. 100, Guangzhou 510006, PR China
- ^b Division of Energy and Environment Graduate School, Tsinghua University, Li Shui Road, Nanshan, Shenzhen City 518055, PR China

ARTICLE INFO

Article history:
Received 1 October 2012
Received in revised form
26 December 2012
Accepted 22 January 2013
Available online 14 February 2013

Keywords: Red afterglow WO₄²⁻ Eu³⁺ Co-doped

ABSTRACT

The red afterglow phosphors of CaWO₄ doped with Eu^{3+} , Zn^{2+} or (and) Si^{4+} were prepared by solid state reaction. All crystalline phases were identified by the X-ray powder diffraction (XRD). The photoluminescence spectra and decay curves as well as thermoluminecence (TL) curves of all samples were also investigated. In comparison to CaWO₄: Eu^{3+} phosphor, the luminescence and afterglow properties could be improved greatly after being doped with Zn^{2+} or (and) Si^{4+} ions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, a large numbers of rare-earth (RE) doped phosphors with afterglow property have been discovered and then extensive investigations are carried out, and many hypotheses of the cause of the afterglow mechanism have been drawn. Along with the increase of the discovering of new afterglow phosphors, new explanations are emerging. But there still lacks a suitable interpretation for all afterglow phosphors. Sometimes some explanations are conditioned to a specific aspect and then some drawbacks may appear. For example, Matsuzawa et al. [1] prepared the indubitable classic aluminate-based persistent phosphor, SrAl₂O₄:Eu²⁺, Dv³⁺, and raised the famous holes-transfer model to explain the afterglow origin. After then, researchers performed various experiments to confirm the validity of this model, such as electron paramagnetic resonance. However, the results showed that there is still no evidence for this model. Under the current studies, whatever it takes, there is an indisputable fact that the defects generated by the replacement of the RE ions in matrix are an indispensable condition to generate afterglow property. Yet, the true nature of the afterglow phenomenon still needs to be revealed. Therefore, presenting a feasible mechanism for the explanation of the afterglow property is desirable.

It is well known that there is an efficient energy-transfer from WO₄²⁻ to Eu³⁺ in CaWO₄:Eu³⁺ phosphor [2-5]. When sample is exposed to the charge-transfer (CT) band of WO₄²⁻, the absorbed energy from WO₄²⁻ can transfer to Eu³⁺ and then the characteristics emission of Eu³⁺ will appear. In 2004, Liu et al. [6] found a red afterglow phenomenon in the study of Eu³⁺ doped CaWO₄ phosphors. They ascribed the afterglow property to the defects generated by both the replacement of Ca²⁺ and W⁶⁺ in matrix with Eu³⁺, and the latter replacement was proposed to dominate to create the defects in view of the five TL peaks. However, the reports concerning this red afterglow property are seldom in the subsequent years. Until recent years. Kang and Wu et al. studied the afterglow property of RE ions (RE = Tb [7], Pr [8], Sm [9], and Eu [10]) doped CaWO₄ phosphors, and the results showed that the afterglow phenomenon could be only generated after being excited by the charge-transfer (CT) band of WO₄²⁻. In other words, if using the Eu³⁺ excitation peaks (365 and 393 nm) directly to excite samples, afterglow phenomenon is not evident. Finally, the mechanism model based on the energy-transfer from WO₄²⁻ to Eu³⁺ in CaWO₄ matrix, which is another example of the explanation of the afterglow property, is proposed.

In the progress of the study of the red afterglow phosphors, researchers found that the afterglow property of $Y_2O_2S:Eu^{3+}$ phosphors could be improved by co-doping with Ti^{4+} and Mg^{2+} [11–13], especially its excellent brightness and chemical stability when compared to sulfide phosphors (e.g. CuS:Eu). However, the biggest drawback is the persistent duration, only lasting several minutes. Ten years later, Zeng et al. [14] found that the doping of Si^{4+} and

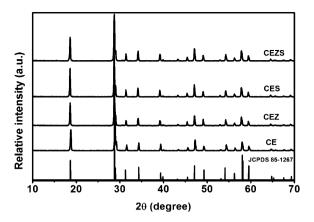
^{*} Corresponding author. Tel.: +86 20 39322262; fax: +86 20 39322265. E-mail address: huyh@gdut.edu.cn (Y. Hu).

 $\rm Zn^{2+}$ ions in $\rm Y_2O_2S$: $\rm Eu^{3+}$ facilitated in the prolongation of the afterglow duration and luminescent property. Recent years, Wu et al. [15] studied the influence of $\rm Ti^{4+}$ and $\rm Mg^{2+}$ co-doping on the luminescent and afterglow properties of $\rm CaWO_4$: $\rm Eu^{3+}$, and the results showed that $\rm Mg^{2+}$ enhanced the efficiency of CT emission of $\rm WO_4^{2-}$ while the $\rm Ti^{4+}$ enhanced the energy transfer rate from CT to $\rm Eu^{3+}$. Other than that, it was found that the intensity and the afterglow duration could be significantly improved by the simultaneous incorporation of $\rm Ti^{4+}$ and $\rm Mg^{2+}$. Encouraging by the pioneers, in the present work, we investigated luminescence property of $\rm Si^{4+}$ or (and) $\rm Zn^{2+}$ ions co-doped $\rm CaWO_4$ phosphors and the corresponding results indicated that there will be a good promising application of this phosphor.

2. Experimental procedure

2.1. Synthesis

nominal Samples with the compositions $Ca_{0.99-x-y}WO_4:Eu_{0.01}^{3+},Zn_x^{2+}, Si_y^{4+} (y=0, x=0, 0.5\%, 1.0\%,$ 1.5%, 2.0%, 3.0%; x = 0, y = 0.5%, 1.0%, 1.5%, 2.0%, 3.0%; x = 1.0%, y = 1.0%) were prepared by solid state reaction. Among theses samples, Ca_{0.99}WO₄:Eu_{0.01}³⁺, Ca_{0.98}WO₄:Eu_{0.01}³⁺, Zn_{0.01}²⁺, $Ca_{0.98}WO_4:Eu_{0.01}^{3+}$, $Si_{0.01}^{2+}$ and $Ca_{0.97}WO_4:Eu_{0.01}^{3+}$, $Zn_{0.01}^{2+}$, $Si_{0.01}^{2+}$ were denoted as CE, CEZ, CES and CEZS, respectively. It noted that the 0.01 M of the Eu³⁺ concentration and the sintered temperature in present paper was from Liu et al. [6]. The raw materials, CaCO₃ (analytical reagents (A. R.)), WO₃ (A. R.), Eu₂O₃ (99.99), ZnO (A. R.) and SiO₂ (A. R.), were employed in this experiment. Initially, the raw materials were weighed according to the nominal compositions. Then the weighed powders were mixed and milled thoroughly for 2 h in an agate mortar and the mixtures were sintered at 1000 °C for 3 h. After cooling to room temperature, the final products were obtained.


2.2. Characterization

Phase identification of the samples was carried out by X-ray diffraction (XRD) using a diffractometer with Cu $K\alpha$ radiation (λ = 1.5406 Å). The excitation and emission spectra were recorded by a Hitachi F-7000 Fluorescence Spectrophotometer with a Xe lamp excitation, and the scanning rate was 1200 nm/min. The afterglow property and thermoluminescence (TL) spectra were measured by a FI427A1 thermoluminescent dosimeter (CNNC Beiiing Nuclear Instrument Factory), 0.01 g powder for each sample was weighed to measure the TL curves and decay curves. The decay curves were recorded after samples were excited by the mercury lamp for 3 min, and the interval between the decay curves measurement and the removal of excitation source was 0.5 min. Priors to the TL measurement, all samples were also exposed to the mercury lamp for 3 min. The interval between the TL measurement and the removal of excitation source was 10 min. The heating rate of the TL curves was $1 \,^{\circ}\text{C}\,\text{s}^{-1}$.

3. Results and discussion

3.1. Phase identification

The XRD patterns of CE, CEZ, CES and CEZS samples are presented in Fig. 1. Compared with the JCPDS card No. 85-1267, it is found that the structures can well be indexed to scheelite structure with space group $I4_{1/a}$ (No. 88). No other peaks can be found, indicating that samples are phase pure. In view of the ionic sizes (Ca²⁺, eighth coordination, 1.12 Å; W⁶⁺, four coordination, 0.42 Å; Eu³⁺, eighth coordination, 1.066 Å; Zn²⁺, eighth coordination, 1.04 Å, Si⁴⁺, four

Fig. 1. XRD patterns of $Ca_{0.99}WO_4$: $Eu_{0.01}^{3+}$, $Ca_{0.98}WO_4$: $Eu_{0.98}WO_4$: $Eu_{$

coordination, 0.40 Å), the Eu $^{3+}$, Si $^{4+}$ and Zn $^{2+}$ ions tend to substitute the Ca $^{2+}$, W $^{6+}$ and Ca $^{2+}$ ions, respectively. Therefore, it indicates that small amount of Eu $^{3+}$, Si $^{4+}$ and Zn $^{2+}$ ions have little influence on the crystal structure.

3.2. Fluorescence spectra

The excitation spectrum of pure CaWO₄ along with its emission spectrum is shown in Fig. 2. As shown in this figure, the excitation spectrum (a) (λ_{em} = 424 nm) contains a broad band with the wavelength range from 220 to 280 nm. This broad band can be assigned to the charge transfer (CT) absorption from the oxygen ligands to the central tungsten atom within the WO₄²⁻ group [2–5]. Up excitation at 243 nm, the emission spectrum (b) of CaWO₄ is obtained. It clearly shows that the wavelength range of the broad emission band is 300–550 nm and the maximum value locates at 424 nm.

Monitoring the emission peak at 616 nm, the excitation spectra of CE, CEZ, CES and CEZS samples are obtained, as shown in Fig. 3. The excitation spectra consist of a broad band (200–350 nm) and several sharp lines (350–550 nm), corresponding to the CT band and characteristics transitions of Eu³+, respectively. As shown in this figure, the CT band shifts toward higher energy side slightly (272 nm \rightarrow 264 nm \rightarrow 255 nm \rightarrow 250 nm, corresponding to CE \rightarrow CEZ \rightarrow CEZS \rightarrow CEZS, respectively). That is to say, incorporation of Zn²+ or (and) Si⁴+ in Ca_{0.99}WO₄:Eu_{0.01}³+ results in the blue shift of the CT band. The sharp lines at 360, 380, 394, 412, 464, and 531 nm

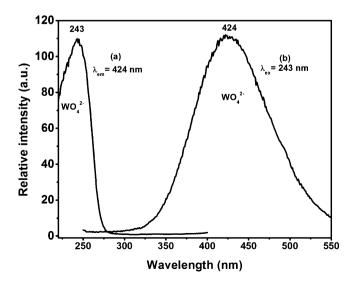


Fig. 2. Excitation and emission spectra of pure CaWO₄ sample.

Download English Version:

https://daneshyari.com/en/article/1529001

Download Persian Version:

https://daneshyari.com/article/1529001

Daneshyari.com