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In this work, the effect of dispersed phase rheology on the drag phenomena of single and of ensembles of
fluid spheres translating in an immiscible power-law continuous phase has been studied numerically at
moderate Reynolds numbers. The results presented herein encompass the following ranges of conditions:
1<Re, <200,0.1 <k<50,0.2<®<0.6,0.6 <n; <1.6and 0.6 <n, < 1.6, thereby enabling the effects of the
Reynolds number (Re,), of the internal to external fluid characteristic viscosity ratio (k), of the volume
fraction of the dispersed phase (@) and of the two power-law indices (n;, n,) on drag coefficient to be
delineated. This information facilitates the estimation of the rate of sedimentation of single fluid spheres
and their ensembles in quiescent continuous phase. Within the range of conditions studied herein, the
effect of the dispersed phase rheology is found to be rather small.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Due to their wide ranging applications in chemical, biological
and processing industries, considerable effort has been devoted to
the study of the hydrodynamic behaviour of fluid spheres in another
immiscible liquid phase [1,2]. While numerous studies dealing
with the behaviour of single particles provide useful insights, one
frequently encounters ensembles of droplets in engineering appli-
cations. In recent years, considerable research efforts have been
directed in developing reliable theoretical/numerical methods for
the prediction of the settling velocity in liquid-liquid systems to
evaluate their stability and/or to estimate the available contact time
between the two phases. Over the years, significant information
has been reported on the settling velocity of single fluid spheres
[3-5] and their ensembles [6-8]. Thus, it is possible to estimate
the settling velocity of the dispersed phase in these systems over
conditions of practical interest when both phases are Newtonian
fluids.

On the other hand, many high molecular weight polymers
and their solutions, slurries, foams and emulsions encountered in
several industrially important applications display shear-thinning,
shear-thickening, yield stress and viscoelastic behaviour [9]. Due to
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the wide occurrence of non-Newtonian fluid behaviour, many stud-
ies are available which elucidate the influence of the continuous
phase rheology (especially of shear-thinning and viscoelastic-
ity) on the drag of single Newtonian fluid spheres, e.g., see
Refs. [10-14] and for ensembles of fluid spheres [15-18]. Hence,
reliable drag results are now available over the ranges of condi-
tions (1 <Re, <200, 0.6 <ny, < 1.6, 0.1 <k <50) for single spheres
and over the range of volume fraction of the dispersed phase
(0.2<®<0.6) for ensembles. Broadly speaking, shear-thinning
fluid behaviour reduces drag while shear-thickening enhances it as
compared to its value in Newtonian continuous media otherwise
under identical conditions.

In contrast, very little is known about the case when the dis-
persed phase or both phases exhibit non-Newtonian behaviour.
For instance, Tripathi and Chhabra [19] used the velocity and
stress variational principles to obtain approximate upper and lower
bounds on the drag of a power-law fluid sphere falling in another
power-law medium. The two bounds diverge with the increasing
degree of shear-thinning behaviour, i.e., the decreasing value of the
power-law index. Subsequently, this work was extended to obtain
approximate upper and lower bounds on the drag (or rate of sed-
imentation) of ensembles of fluid spheres via the free surface cell
model [20]. In the creeping flow region, both these studies sug-
gested the influence of the dispersed phase rheology to be rather
small in the limit of the zero Reynolds number. On the other hand,
Gurkan [21] considered the case of a power-law drop falling in a
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Newtonian continuous phase. Their results embracing the range of
conditions (10 <Re, <50, 0.1 <k <1000 and 0.6 <n; < 1) also sug-
gest the effect of the dispersed phase rheology to be rather small,
albeit their numerical results are believe be inaccurate in the lim-
iting case of both phases being Newtonian fluids thereby casting
some doubts about the reliability of their results for power-law
fluids [3-5,13].

Similarly, there have been a few experimental results involving
non-Newtonian fluid spheres settling in a Newtonian continu-
ous medium. Marrucci et al. [22] reported experimental terminal
velocity data in the creeping flow regime extending over the
range of parameters 0.0045 <k < 1.88 and 0.53 <n; <0.745. How-
ever, due to the contamination by surface active agents which tend
to immobilize the free surface of drops, their results are in com-
plete agreement with the Stokes expression for solid spheres, even
though the highest value of the viscosity ratio, k, in their study is
only of the order of 2. Gillapsy and Hoffer [23] reported experiments
on the drag coefficients of Newtonian and power-law liquid drops
falling in air at large Reynolds numbers and reported no difference
between the drag values for Newtonian and non-Newtonian liq-
uid drops. This is also not at all surprising as their results relate to
high values of the Reynolds number wherein the role of viscosity is
expected to be small. Rodrigue and Blanchet [11] and Rodrigue [14]
have carried out experimental studies on the motion and shapes of
viscoelastic drops in another Newtonian and/or viscoelastic fluid
with or without the presence of surfactants. However, the major
thrust of their study was on shape transitions and thus no drag
results were reported. Also, their experimental fluids exhibited
both shear-thinning and viscoelastic characteristics and therefore,
it is not possible to delineate the influence of these two character-
istics.

It is thus clear that no prior results are available on the drag of
single fluid spheres and their ensembles when the dispersed phase
or both phases exhibit power-law fluid behaviour in the moder-
ate Reynolds number range. This work aims to fill this gap in the
literature.

2. Problem statement and description

Since extensive descriptions of the problems considered herein
are available elsewhere [7,13,18], only the salient features are
repeated here. A spherical coordinate system (r, 6, ¢) with its ori-
gin at the centre of the drop is used with polar axis (0 =0) directed
along the direction of flow. The flow is axisymmetric, i.e., vy is zero
and no flow variable depends on the ¢-coordinate. The dimension-
less governing equations for this flow in their conservative form
are:

e Continuity equation
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where subscripts i, o represent the internal (dispersed phase) and
the external (continuous phase) flow variables, respectively. For an
incompressible fluid, the extra stress tensor (tyy) is related to the
rate of strain tensor (&xy) as:

X, y=r, 0, ¢ (4)

The viscosity of a power-law liquid is given as:

. (n-1)/2
n=< 5 ) (5)

Txy = 20)Exy;

where IT; is the second invariant of the rate of deformation tensor
and its expression in terms of v; and vy and their derivatives is
available in standard books (e.g., see [24]). Eq. (5) represents shear-
thinning, Newtonian and shear-thickening fluid behaviour forn<1,
n=1 and n>1, respectively. In the above equations, velocity has
been scaled using Uy, radial coordinate using the drop radius R,
pressure using pU2, components of the rate of strain tensor by Uo /R,
viscosity by a reference viscosity 7. (=m(Uo/R)"1), extra stress
components by 7..f(Up/R) and time by R/U,. Here m is the power-
law fluid consistency index and n is the power-law behaviour index.
The Reynolds number for the external phase is defined as follows:

PoUZm)(2R)™
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Reo = (6)
The two Reynolds numbers, Re; and Re, are inter-related via the
characteristic viscosity ratio and the density ratio as follows:
Regh
7
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where p is the density of fluid, A is the density ratio (p;/0o) and k
is the characteristic viscosity ratio defined as:
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For treating the motion of ensembles, within the framework
of the free surface cell model [25], the inter-drop interactions
are approximated by postulating each drop to be surrounded
by a hypothetical envelope of the continuous fluid of radius R,
[1,7,8,15-18,25]. The dimensionless radius of the outer spherical
envelope is related to the overall mean volume fraction of the dis-
persed phase, @, as:

=o'/ (9)

Therefore, by simply varying the value of R, one can simulate
the ensembles of different volume fractions of the dispersed phase
including the limiting case of a single droplet by setting R., — oo,
ie, ®—0.

The relevant boundary conditions for this flow can be written in
their dimensionless form as follows:

Rei =

¢ At the outer boundary (r=R.):
(vr)o = —cosf (10)
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