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Macroscopic description of spin transfer torque
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Abstract

A macroscopic description of the current-induced torque due to spin transfer has been developed for layered systems consisting of ferromagnetic
films, separated by nonmagnetic layers. The description is based on the classical spin diffusion equations for the distribution functions used in
the theory of current-perpendicular-to-plane giant magnetoresistance (CPP-GMR), and the relevant boundary conditions for the longitudinal and
transverse components of the spin current and spin accumulation. The torque is expressed as a function of the usual parameters derived from CPP-
GMR experiments and two additional parameters involved in the transverse boundary conditions. The model describes qualitatively the normal
and inverse switching phenomena studied in recent experiments. We also discuss a structure for which the spin torque disappears at a noncollinear
magnetic configuration.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The spin polarized current transferred through a magnetic
body can switch its magnetic moment without applying an exter-
nal magnetic field. The theoretical concept was introduced inde-
pendently by Slonczewski[1] and Berger[2]. Current-induced
magnetic switching (CIMS) has been clearly demonstrated by
experiments on structures F1/N/F2, consisting of two ferromag-
netic layers F1 and F2 of different thicknesses, separated by a
nonmagnetic layer N[3]. Starting from a parallel configuration
of the magnetizations in F1 and F2, a current exceeding a cer-
tain critical value can reverse the magnetic moment of the thinner
magnetic layer to set up an antiparallel configuration. In turn, a
current in the opposite direction can switch back the structure
to the parallel configuration. Such a back and forth magnetic
switching is of great importance for spintronics.

Both current-perpendicular-to-plane giant magnetoresis-
tance (CPP-GMR) and CIMS depend on spin accumulation
effects. This is well known for CPP-GMR. For CIMS, this has
been shown by experiments in which the spin accumulation pro-
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file is manipulated by introducing spin-flip scattering at different
places in the structure[4]. It turns out that both the GMR effect
and the spin transfer torque can be enhanced by introducing
spin-flip scattering outside a F1/N/F2 trilayer (in the leads) or
reduced by spin-flip scattering in the nonmagnetic layer N. This
calls for a unified theory of CPP-GMR and spin transfer torque,
taking into account spin accumulation, spin relaxation, and both
interface and bulk spin dependent scattering.

The model used in this paper to calculate angular dependence
of the torque due to spin transfer fits directly with the interpreta-
tion of CPP-GMR data in the model of Valet and Fert[5]. Most of
the necessary parameters can be derived directly from the analy-
sis of CPP-GMR experimental data. The additional parameters,
namely the real and imaginary parts of the mixing conduc-
tance can be derived from quantum-mechanical calculations
[6,7] of the transmission of spin currents at the interface under
consideration.

The calculations of our model are based on the macroscopic
transport equations derived from the Boltzmann equation
by Valet and Fert[5] for the CPP-GMR of multilayers with
collinear magnetizations. We assume that the absorption of
transverse component of the spin currents is quasi-interfacial,
as this has been justified by a quantum description of the
transmission of transverse spin current into a ferromagnetic
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layer[7]. The calculations are based on the boundary conditions
for the spin currents and spin accumulation at the interfaces
involved, derived by Brataas et al.[8].

2. Theoretical description

The structure F1/N/F2 under consideration consists of two
left F1 (thick) and right F2 (thin) magnetic films, separated by a
nonmagnetic layer N[9]. Thickness of the nonmagnetic spacer
layer isdN, whereas of the thick and thin magnetic films isdF1
anddF2, respectively. The structure is shown schematically at the
top of Fig. 1, where also left L and right R leads are indicated.
Both ferromagnetic films are magnetized in their planes, and
magnetization of the thin layer is rotated by an angleϕ around the
axisx normal to the films. Axisz of the coordinate system is along
the net spin of the thick (F1) ferromagnetic film (opposite to the
corresponding magnetization). In both ferromagnetic films, the
local quantization axes are along the local net spin, while as the
global quantization axis we choose the local one in the thick
ferromagnetic film. According to our definition, charge current
I0 is positive when it flows along the axisx from left to right,

Fig. 1. Top: schematic structure of a trilayer system. Arrows indicate orientation
of the net spin of the magnetic films. (a) Normalized in-plane torqueτϕ acting
on the thin ferromagnetic film due to spin transfer, calculated as a function of
the angleϕ for Co/Cu/Co and Py/Cu/Py stacks. The values in brackets indicate
the thicknesses in nanometer. (b) Normalized out-of-plane torque, calculated
as a function of the angleϕ for the same systems as in (a). The insets indicate
angular dependence of the corresponding parametersa andb, respectively.

i.e., from the thick towards thin magnetic films (electrons flow
then from right to left).

We assume the electric current in the multilayer is carried
by free-like conduction electrons of equal concentrations in all
the layers and without spin polarization in equilibrium. The dis-
tribution function inside the films is a 2× 2 matrix in the spin
space, and its spatial variation can be described by the diffusion
equation. We assume the distribution functions are uniform in
the plane of the films, and vary only along the axisx normal to
the films. We also assume that the internal exchange field inside
ferromagnetic metals is strong enough so that the component of
the distribution function perpendicular to the local magnetiza-
tion vanishes. Thus, the distribution function is diagonal when
the spin quantization axis is parallel to the local spin polarization
of the ferromagnetic system.

Electron distribution function is a 2× 2 matrix in the spin
space. Owing to strong exchange field in ferromagnetic layers,
it is diagonal in the local reference frame (quantization axis
along the local spin polarization). The diffusion equation for the
distribution function leads then to the following equations for
the electro-chemical potentials ¯µ↑ andµ̄↓ for spin-majority and
spin-minority electrons[10],

∂2(µ̄↑ − µ̄↓)

∂x2 = 1

l2sf

(µ̄↑ − µ̄↓), (1)

∂2(µ̄↑ + µ̄↓)

∂x2 = η
∂2(µ̄↑ − µ̄↓)

∂x2 , (2)

where the spin diffusion lengthlsf is defined as 1/l2sf =
(1/l2↑ + 1/l2↓)/2 with l2↑ = D↑τsf, l2↓ = D↓τsf, andη = (D↓ −
D↑)/(D↓ + D↑). Here,τsf is the spin-flip relaxation time and
D↑ (D↓) denotes the spin diffusion constant for spin-majority
(spin-minority) electrons. The above equations are equivalent to
the equations derived from the Boltzmann equation approach by
Valet and Fert[5].

Solutions of Eqs.(1) and (2)for the electro-chemical poten-
tials can be written in the general form as

�
µ̄ = µ̄0

�

1 + g
�
σz with

µ̄0 = (µ̄↑ + µ̄↓)/2, g = (µ̄↑ − µ̄↓)/2 being the spin accumu-
lation, and

�

1 denoting the 2× 2 unit matrix. Explicit solutions
for µ̄0 andg are:

µ̄0 = η

[
A exp

(
x

lsf

)
+ B exp

(−x

lsf

)]
+ Cx + G, (3)

g = A exp

(
x

lsf

)
+ B exp

(−x

lsf

)
, (4)

with A, B, C andG being constants to be determined from appro-
priate boundary conditions.

Diffusive spin and charge currents can be written in the form
�
j = (j0

�

1 + jz
�
σz)/2, with j0 = j↑ + j↓ being the particle cur-

rent (charge currentI0 is I0 = ej0 with e being the electron charge,
e < 0) andjz = j↑ − j↓ denoting thez-component of the spin
current. Explicit forms ofj0 andjz are:

j0 = −ρFC(D↑ + D↓), (5)
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