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Article history: Efficient storage and conversion of electrical charge in materials, to a voltage and current, provides the basis
Available online 8 August 2015 for batteries and capacitors. Given the widespread usage of portable electronics there is a continual need to
further enhance the energy and power density of such devices, which could be accomplished through the
Keywords: use of nanostructured materials. The large surface area to volume ratio and the possibilities of new
Charge storage materials physics and chemistry provide the rationale for their use and is discussed. The former aspect
Electrochemical capacitors considers the relevance to the area-dependent capacitance as well as the parasitic elements that reduce the
Batteries ] charge and energy delivery from the theoretical maximum values. Specific instances of electrode materials,
Pseudocapacitance as well as the electrode-electrolyte interface and electrolyte properties, with respect to their capability and

Quantum capacitance

) . prospects are examined. Alternate internal and external surface dependent Faradaic reactions and
Thin layer electrochemistry

concomitant pseudocapacitance based mechanisms, seem to have the ability to bridge the large energy
densities of batteries to the power density of the capacitors perhaps helping in realizing a truly useful
hybrid device. While much of the report relates to presently used devices such as Li-ion batteries and
activated carbon based electrochemical capacitors, the relevant principles are shown to be valid for other
types of charge conversion agents such as photoelectrochemical and dye-sensitized solar cells. The review
also considers perspectives on alternate materials and architectures.
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1. Introduction

Human prosperity has been directly linked to the ability to
efficiently use energy, and requires both energy generation and
storage. Concerns related to the environmental impact as well as the
possible resource crunch underlying fossil-based fuels has been a
major motivator for the development of alternative, renewable,
energy sources. To enhance the viability of such sources, as well as to
increase the utility of conventional energy sources, it is necessary to
provide compatible materials and devices that can store the energy
for later use. In this context, recent advances in nanoscience and
technology have been explored to gauge whether their use could
facilitate improvements in the energy storage capacity. Given that
most energy is utilized in the form of electricity and that the source
of energy often resides at the level of chemical interactions involving
electrons and ions, the notion of charge transfer and charge based
energy storage is prominent.

Broadly, energy storage in the electrochemical sense has been
conventionally classified into (a) batteries or (b) capacitors, in terms
of whether electrical charge is harnessed mostly in a thermodynamic
sense (in terms of a net free energy change, of the material
undergoing an electrochemical reaction) or in a kinetic sense (in
terms of transducing the charge at an interface into an electrical
current). From a practical perspective, batteries incorporate devices
with high energy density (~100 Wh/kg) and relatively low power
(rate of energy uptake/release)density (~1 kW/kg), while capacitors
comprise media with contrary attributes, i.e., relatively lower energy

density (~10 Wh/kg) and higher power density (~10 kW/kg) [1,2]
(for an excellent perspective on the meaning of such numbers,
consider the book: Sustainable Energy [3], e.g., the hydrocarbon based
fuel for cars has a calorific value of ~8 kWh/kg or that the typical
power consumed by a 100 W light bulb (say, 50 g in weight) would
be of the order 2 kW/kg). The overarching technological imperative
in energy storage is then to devise intermediate devices, combining
the best of both batteries and capacitors. Indeed, there has been
frequent utilization of mutual principles, e.g., the invoking of an
intercalation pseudocapacitance (see Section 5.1.4) for the fabrica-
tion of electrochemical capacitors.

We will then consider the major technological imperatives for
the scientific study of charge storage, viz., through exploring the
principles of batteries and capacitors. We broadly survey and
understand the scientific rationale behind the modalities of charge
creation and manipulation for electrochemical energy storage in
nanostructures. We will attempt to understand the aspects that are
unique to the nanoscale for it is to be expected that the relevant
length scales bridge atomistic aspects to macro-scale utilization. It
is also aimed to comprehend (a) where the charge is stored i.e., on
the surface or in the volume/bulk, and (b) the specific reaction sites
for charge transfer in an electrochemical device, and their
relevance for energy storage. Insights into the mechanism of
charge transfer may be obtained through a consideration of the
combined as well as separate influences of (a) adsorption, (b)
accumulation, and (c) electrochemical reaction processes. The
nature and origin of the reaction sites in materials will then be



Download English Version:

https://daneshyari.com/en/article/1532337

Download Persian Version:

https://daneshyari.com/article/1532337

Daneshyari.com


https://daneshyari.com/en/article/1532337
https://daneshyari.com/article/1532337
https://daneshyari.com

