

Contents lists available at ScienceDirect

Materials Science and Engineering R

journal homepage: www.elsevier.com/locate/mser

Recent progress in resistive random access memories: Materials, switching mechanisms, and performance

F. Pan*, S. Gao, C. Chen, C. Song, F. Zeng

Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China

ARTICLE INFO

Available online 10 July 2014

Resistive random access memory

Article history:

Keywords:

Resistive switching

Nonvolatile memory Memristor

Organic resistive memory

ABSTRACT

This review article attempts to provide a comprehensive review of the recent progress in the so-called resistive random access memories (RRAMs). First, a brief introduction is presented to describe the construction and development of RRAMs, their potential for broad applications in the fields of nonvolatile memory, unconventional computing and logic devices, and the focus of research concerning RRAMs over the past decade. Second, both inorganic and organic materials used in RRAMs are summarized, and their respective advantages and shortcomings are discussed. Third, the important switching mechanisms are discussed in depth and are classified into ion migration, charge trapping/detrapping, thermochemical reaction, exclusive mechanisms in inorganics, and exclusive mechanisms in organics. Fourth, attention is given to the application of RRAMs for data storage, including their current performance, methods for performance enhancement, sneak-path issue and possible solutions, and demonstrations of 2-D and 3-D crossbar arrays. Fifth, prospective applications of RRAMs in unconventional computing, as well as logic devices and multi-functionalization of RRAMs, are comprehensively summarized and thoroughly discussed. The present review article ends with a short discussion concerning the challenges and future prospects of the RRAMs.

© 2014 Elsevier B.V. All rights reserved.

Contents

1.	Introd	luction		2			
2.	Mater	ials		3			
	2.1.	Storage media					
		2.1.1.	Inorganic storage media	4			
		2.1.2.	Organic storage media	5			
	2.2.	Electrod	e materials	5			
3.	Switcl	Switching mechanisms					
3.1. Ion migration		lon migi	ration	6			
		3.1.1.	Cation migration	6			
		3.1.2.	Anion migration	13			
3.2. Charge trapping/de-trapping			rapping/de-trapping	17			
		3.2.1.	Interfacial charge traps	17			
		3.2.2.	Charge traps provided by a middle nanoparticle layer	17			
		3.2.3.	Randomly distributed charge traps	18			
	3.3.	Thermochemical reaction					
		3.3.1.	Thermochemical reaction in semiconducting metal oxides	20			
		3.3.2.	Thermochemical reaction in organics	20			
	3.4.	Exclusiv	e mechanisms in inorganics	21			
		3.4.1.	Insulator-to-metal transition in Mott insulators	21			
		3.4.2.	The sp ² /sp ³ conversion in amorphous carbon	22			

http://dx.doi.org/10.1016/j.mser.2014.06.002 0927-796X/© 2014 Elsevier B.V. All rights reserved.

^{*} Corresponding author. Tel.: +86 10 62772907; fax: +86 10 62771160. *E-mail address:* panf@mail.tsinghua.edu.cn (F. Pan).

	3.5.	Exclusive mechanisms in organics		22			
		3.5.1.	Charge transfer	22			
		3.5.2.	Conformational change	23			
4.	RRAM	Is for data	a storage	24			
	4.1.	Current	performance	24			
	4.2.	Methods for performance enhancement		25			
		4.2.1.	Doping	25			
		4.2.2.	Electrode engineering	27			
		4.2.3.	Interface engineering	29			
		4.2.4.	Optimization of device structure and measurement circuit	31			
		4.2.5.	Multilevel storage and conductance quantization	33			
	4.3.	Sneak-p	ath issue and possible solutions	37			
		4.3.1.	Diode	38			
		4.3.2.	Bidirectional selector	39			
		4.3.3.	Self-rectification	41			
		4.3.4.	Complementary resistive switch	41			
	4.4. Demonstrations of 2-D and 3-D crossbar arrays						
5.	Prospective applications and multi-functionalization of RRAMs						
	5.1.	RRAMs	for unconventional computing	44			
	5.2.	RRAMs for logic application		47			
		5.2.1.	Reconfigurable switches in FPGAs	47			
		5.2.2.	Logic gates	48			
		5.2.3.	Material implication logic	48			
	5.3.	Multi-functionalization of RRAMs					
		5.3.1.	Involvement of spins in RRAMs	50			
		5.3.2.	Interactions between photons and electrons in RRAMs	51			
		5.3.3.	A combination of resistive switching and superconducting behavior	51			
6.	Challe	enges and	prospects	52			
	Ackno	wledgen	nents	54			
	References						

1. Introduction

Silicon-based Flash memories, consisting of a metal-oxidesemiconductor field-effect-transistor with an additional floating gate in each memory cell, represent the state-of-the-art nonvolatile memory and represent the lion's share of the current secondary memory market due to their high density and low cost. However, Flash memories suffer from several obvious disadvantages such as low operation speed (write/erase time: 1 ms/0.1 ms), poor endurance (10⁶ write/erase cycles) and high write voltage (>10 V) [1]. Moreover, Flash memories will reach their miniaturization limit in the near future, not for technical reasons, but for physical limitations such as large leakage currents. To overcome the shortcomings of Flash memories, four emerging random access memories (RAMs) have been proposed: ferroelectric RAMs (FRAMs), magnetic RAMs (MRAMs), phase-change RAMs (PRAMs) and resistive RAMs (RRAMs). Among these memories, FRAMs and MRAMs also face the miniaturization issue because of their large memory cell size [1]. For PRAMs, the large power consumption during the reversible phase transition between the amorphous and crystalline phases would be the most serious obstacle to their commercialization [1]. Fortunately, RRAMs have been demonstrated to exhibit excellent miniaturization potential down to <10 nm [2] and to offer sub-ns operation speed [3,4], <0.1 pJ energy consumption [5.6] and high-endurance ($>10^{12}$ switching cycles) [7]. Therefore, RRAMs are also a potential alternative to the current main memory, i.e., dynamic RAMs (DRAMs).

In general, a RRAM cell is composed of a conductor/insulator (or semiconductor)/conductor sandwich structure, as shown in Fig. 1a. This simple structure enables it to be easily integrated in passive crossbar arrays with a small size of $4F^2$ (*F* is the minimum feature size), and the size can be further reduced to $4F^2/n$ within vertically stacked three-dimensional (3-D) architectures (*n* is the stacking layer number of the crossbar array) [8]. The intrinsic physical phenomenon behind RRAMs is resistive switching (RS), which

means that the device can be freely programmed into a high resistance state (HRS, or OFF state) or a low resistance state (LRS, or ON state) under external electrical stimuli. In most cases, the current flows uniformly through the device in the HRS and is restricted to a local region with high conductance known as a conducting filament (CF) in the LRS [9]. The switching event from the HRS to the LRS and the corresponding voltage are denoted as set process and V_{set} , respectively. In contrast, the switching event from the LRS to the HRS and the corresponding voltage are denoted as reset process and V_{reset} , respectively. There are usually two types of switching modes: unipolar and bipolar switching. The former requires the same electrical polarity during the set and reset processes, whereas the latter requires opposite electrical polarities, as shown by the schematic current–voltage (*I–V*) curves in Fig. 1b and c, respectively.

It has been almost a half century since the initial experimental observations of RS. In 1962, Hickmott [10] observed large negative differential resistance in five thin anodic oxide films including SiO_{x_1} Al₂O₃, Ta₂O₅, ZrO₂ and TiO₂. Subsequently, more materials were demonstrated to show RS, and the switching mechanisms started to be explored as well [11-13]. Strong research interest in RS, however, only lasted approximately a decade owing to the fact that the observed RS at that moment was not sufficiently robust for memory application, and also due to the prosperity of Si-based integrated circuit technology. Since the late 1990s, interest in RS began to revive because of the search for an alternative to Si-based memories. The first practical application of RRAMs was reported by Zhuang et al. [14]. These researchers fabricated a 64-bit RRAM array using Pr_{0.7}Ca_{0.3}MnO₃ via a 0.5-µm complementary metaloxide-semiconductor (CMOS) process. The device showed good performance with low operation voltage (<5 V), fast speed $(\sim 10 \text{ ns})$ and a large memory window $(>10^3)$. Meanwhile, organics-based RRAMs were introduced by Yang's group [15], greatly enriching the range of usable materials. In 2004, Baek et al. [16] successfully demonstrated the world's premier binary Download English Version:

https://daneshyari.com/en/article/1532371

Download Persian Version:

https://daneshyari.com/article/1532371

Daneshyari.com