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1. Introduction
1.1. Top-down and bottom-up processing of polymer nanocomposites

Nanostructured polymers and hybrid inorganic-organic nano-
composites have gained popularity in the last two decades due to
their exciting bulk and surface properties. The control of the
nanostructure of polymers and the addition of nanoparticles has
led to structural and functional property enhancements in a
number of polymer systems as a material answer to continuous
requirements from advanced industrial sectors. The availability of
new nanoparticles with extraordinary properties (i.e. carbon
nanotubes, graphenes, but also nanoclays, nanocellulose, metals
and ceramics) have determined new and exciting possibilities for a
continuous enlargement of polymer markets. However, the
potentialities of these new materials are still strongly dependent
on the development and scaling-up of reliable processing routes. In
fact, it has been already assessed that the bottleneck for the
exploitation of the theoretical excellent properties of polymer
nanocomposites is the complete dispersion of the nanoparticles in
the matrix and the consequent development of a huge interfacial
area. This complete dispersion will allow maximizing the available
matrix—particle interphase optimizing then the organic-inorganic
interaction, responsible of the enhanced properties of the final

material. So, most of the research efforts in this area have been
focused on developing rational processing strategies for nano-
structured polymers and nanocomposites and in promoting better
matrix—particle interactions.

Since the extraordinary development of polymer nanocompo-
sites, more than two decades ago, many reviews have been
published in the scientific literature on this topic. Several of these
reviews have been focused on the different processing aspects and
on the processing-structure-properties relationships of these
specific materials [1-13]. However, most of them are concentrated
on a particular type of matrix or nanofillers and none of them
report a comprehensive analysis of the physicochemical funda-
mentals affecting the processing behavior of polymer nanocom-
posites.

Bottom-up and top-down approaches have been typically
reported for material nanotechnologies. In particular, it must be
evidenced that polymer nanotechnologies are characterized by a
predominant top-down approach. In fact, the application of typical
processing technologies like extrusion (and other similar melt
mixing processes) are clear top-down processes where ingredients
(polymer and nanoparticles) are introduced and macroscopically
melt mixed in the equipment. The quality of the dispersion is given
by macroscopic processing factors like equipment design, mixing
velocity, residence time, etc. with very limited possibilities for
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