

Contents lists available at ScienceDirect

Materials Science and Engineering R

journal homepage: www.elsevier.com/locate/mser

Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches

F. Berto^{*}, P. Lazzarin

University of Padua, Department of Management and Engineering, Stradella San Nicola 3, 36100 Vicenza, Italy

ARTICLE INFO

Article history: Available online 10 December 2013

Keywords: Brittle fracture Crack Notch Local approaches Strain energy density

ABSTRACT

Brittle failure of components weakened by cracks or sharp and blunt V-notches is a topic of active and continuous research. It is attractive for all researchers who face the problem of fracture of materials under different loading conditions and deals with a large number of applications in different engineering fields, not only with the mechanical one. This topic is significant in all the cases where intrinsic defects of the material or geometrical discontinuities give rise to localized stress concentration which, in brittle materials, may generate a crack leading to catastrophic failure or to a shortening of the assessed structural life. Whereas cracks are viewed as unpleasant entities in most engineering materials, U- and V-notches of different acuities are sometimes deliberately introduced in design and manufacturing of structural components.

Dealing with brittle failure of notched components and summarizing some recent experimental results reported in the literature, the main aim of the present contribution is to present a review of some local approaches applicable near stress raisers both sharp and blunt. The reviewed criteria allowed the present authors to develop a new approach based on the volume strain energy density (SED), which has been recently applied to assess the brittle failure of a large number of materials. The main features of the SED approach are outlined in the paper and its peculiarities and advantages accurately underlined. Some examples of applications are reported, as well. The present review is based on the authors' experience over more than 15 years and the contents of their personal library. It is not a dispassionate literature survey.

© 2013 Elsevier B.V. All rights reserved.

Contents

1.	Intro	duction	3	
2.	Brittle	Brittle fracture of engineering materials		
3.	Review of some local approaches for the failure assessment of brittle and quasi-brittle materials			
	3.1.	Generalized maximum tangential stress criterion	7	
	3.2.	Sih's criterion	8	
	3.3.	Generalized notch stress intensity factors for mode I and mode II loading conditions	9	
		3.3.1. Stress distributions due to U- and V-notches	9	
		3.3.2. Application of the NSIFs to brittle materials under mode I loading	12	
		3.3.3. Notch stress intensity factors for mode II loading	12	
	3.4.	Neuber's fictitious notch rounding (FNR) approach	12	
4.	Theoretical background of the volume-based SED approach			
	4.1.	Strain energy density for sharp V-notches under mode I loading		
	4.2.	Strain energy density for sharp V-notches under mixed mode loading	16	
	4.3.	Blunt V-notches under mode I loading		
	4.4.	Strain energy density for blunt notches under mixed mode loading		
	4.5.	Strain energy density for blunt notches under torsion loading (mode III)	21	
	4.6.	Some advantages of the SED	21	
	4.7.	Non-singular higher order terms and three-dimensional problems near notches	23	

^{*} Corresponding author. E-mail address: berto@gest.unipd.it (F. Berto).

⁰⁹²⁷⁻⁷⁹⁶X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.mser.2013.11.001

		4.7.1.	Higher order terms	23				
		4.7.2.	Three-dimensional problems near notches	23				
5.	Applications of SED to different materials under mode I–III loadings							
	5.1.	Brittle fa	ailure of ceramic materials under mode I loading	26				
	5.2.	Data fro	m polymethyl-methacrylate (PMMA) under different mode loadings	26				
		5.2.1.	Brittle failure data from U- and V-shaped notches in mode I (PMMA at -60 °C)	26				
		5.2.2.	Brittle failure data from U-shaped notches in mixed mode (PMMA at -60 °C)	26				
		5.2.3.	Brittle failure data from U- and V-shaped notches under torsion at room and low temperature (PMMA at -60 °C)	27				
	5.3.	Brittle fa	ailure of graphite: recent results	29				
		5.3.1.	Mixed mode failure	31				
		5.3.2.	Torsion loading	32				
		5.3.3.	Compression loading	33				
		5.3.4.	Final synthesis from all graphite specimens	39				
6.	Application of the SED approach to the fatigue assessment of steel welded joints							
7.	Application of the SED approach to the fatigue assessment of V-notches							
	7.1.	7.1. Data from notched specimens made of C40 steel (normalized state)						
	7.2.	7.2. Data from notched specimens made of 39NiCrMo3 steel (hardened and tempered state)						
	7.3. Multiaxial fatigue data from notched specimens made of AISI 416 steel							
8.	Summary and conclusions							
	Refer	ences		45				

a	crack donth for cracked specimens and notch
u	depth for potched ones
<i>a</i> .	real coefficient of the analytical potential
u1	functions
a	coefficients in the Sib's model
u_{ij}	cobasiva zono model
CZIVI	conesive zone model
C _W	load ratio in the SED evaluation
d	IOAU IALIO III LILE SED EVALUALIOII
u E	Noung's modulus
E F'	roung's modulus
E	generalized Young's modulus.
e_1, e_2, e_3	avpression for sharp V notshes
f	angular functions in stress field distributions
Jij END	fictitious Notch Pounding
F	rupture load
Г 	angular functions in stress field distributions
8ij C	tangential chear modulus
G	cohesive fracture energy
G _F И	thickness of the specimen
$H(2\alpha (R_{-} \langle \alpha \rangle))$	function in the SED expression for blunt
$\Pi(2\alpha,(R_0/p))$	notches
H*	function <i>H</i> in the case of mixed mode loading
h	net width of the specimen
I1. I2. I3	mode 1. 2 and 3 functions in the SED
1, 2, 3	expression for sharp V-notches
I ₂ , I ₁₁ , I ₂ ,	integrals in the application of SED to blunt
$\kappa \mu \kappa \mu$	notches
K _t	theoretical stress concentration factor
$K_t(\rho_f)$	stress concentration factor evaluated with
,.	fictitious notch rounding
$\bar{K_t}$	effective theoretical stress concentration
	factor from averaged notch stresses
K _{IC}	material toughness
$K_{\rm I}, K_{\rm II}, K_{\rm III}$	mode I, II and III stress intensity factors of a
	crack
$K_1 K_2 K_3$	mode 1, 2 and 3 stress intensity factors of a
	sharp V-notch

$K_{1\rho} K_{2\rho} K_{3\rho}$	mode 1, 2 and 3 notch stress intensity factor		
_	of a blunt V-notch		
l _{ch}	characteristic length		
MTS	maximum tangential stress		
q	parameter linked to the V-notch opening		
	angle		
r, θ	polar coordinates		
r_0	distance between the notch tip and the origin		
	of the polar coordinate system		
Ro	radius of the control volume		
S	Sih's parameter		
SED	strain energy density		
S	multiaxiality factor in the FNR approach		
T_{σ}	scatter index in the fatigue curves		
W	size of the specimen		
W	averaged strain energy density		
W_c	critical strain energy		
Greek			
2α	opening angle of V-notch		
γ	supplemetary angle of α ; $\gamma = \pi - \alpha$		
Relative deviation			
$\Delta \sigma_a$	fatigue strength of the butt ground welded		
	joints		
ΔK_{1A}^N	NSIF-based fatigue strength of welded joints		
θ_c	angle of the provisional crack propagation		
κ	parameter tied to the Poisson's ratio in the		
	Sih's MSED criterion		
$λ_1$, $λ_2$ $λ_3$	mode 1, 2 and 3 Williams' eigenvalues for		
	stress distribution at V-notches		
λ	biaxiality ratio in fatigue tests (τ_a/σ_a)		
μ	exponent in Filippi's stress equations		
ν	Poisson's ratio		
ho	Notch radius		
$ ho^*$	microstructural support length		
$ ho_{ m f}$	fictitious notch radius		
σ_{ij}	ij component of the stress tensor		
$ ilde{\sigma}_{ij}$	angular stress functions		

Nomenclature

Download English Version:

https://daneshyari.com/en/article/1532399

Download Persian Version:

https://daneshyari.com/article/1532399

Daneshyari.com