

Contents lists available at ScienceDirect

Materials Science and Engineering R

journal homepage: www.elsevier.com/locate/mser

Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical properties of nanomaterials

Chun Cheng Yang*, Yiu-Wing Mai

Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia

ARTICLE INFO

Article history: Available online 24 March 2014

Keywords: Nanothermodynamics Nanomaterials Thermal stability Magnetic properties Photoelectric behaviors Thermoelectricity

ABSTRACT

An extension of the classic thermodynamics theory to nanometer scale has generated a new interdisciplinary theory – nanothermodynamics. It serves as a bridge between macroscopic and nanoscopic systems. Over the past decade, nanothermodynamics theories have developed rapidly owing to their critical role in investigating the size-dependent physicochemical properties of nanomaterials. This review examines up-to-date research results on this cutting-edge topic. The focus and emphasis are on the utilization of nanothermodynamics models to investigate the size-dependent thermal stability, magnetic properties, photoelectric behaviors, thermoelectric phenomena, mechanical properties, electrical properties, etc. of nanomaterials.

A range of properties have been studied with respect to the effects of size, dimensionality and composition through a quantitative nanothermodynamics model. It is found that (a) the size dependence of these properties can be universally reconciled to the effect of severe bond dangling; (b) for the same material size, the sequence of size effects on the properties, from strong to weak, is nanoparticles, nanowires and thin films; and (c) the composition effects on the properties of nanoalloys are substantial, having a nonlinear relationship. It also reveals that vacancy formation determined by the cohesive energy variation is one of the intrinsic factors which dominate the size-dependent physicochemical properties of nanomaterials.

© 2014 Elsevier B.V. All rights reserved.

Contents

1.	Introd	luction	4
	1.1.	Scope	4
	1.2.	Overview	4
	1.3.	Challenges	5
	1.4.	Objectives	5
2.	Princi	ples: atomic vibrational instability	5
	2.1.	Lindemann's melting criterion	5
	2.2.	Size-dependent melting thermodynamics of crystals	6
3.	Intera	ntomic potential and cohesive energy	7
	3.1.	Interatomic potential at the nanoscale	7
	3.2.	Current nanothermodynamics models of cohesive energy	7
	3.3.	A new model: size, dimensionality and composition dependency	7
	3.4.	Consistency among different nanothermodynamics models.	8
	3.5.	Validity of new model	8

^{*} Corresponding author. Tel.: +61 2 93517145; fax: +61 2 93517060. *E-mail address:* chuncheng.yang@sydney.edu.au (C.C. Yang).

4.	Thern	mal stability	8			
	4.1.	Cohesive energy E_c	8			
		4.1.1. <i>E_c</i> of nanocrystals	8			
		4.1.2. E_c of binary nanoalloys	9			
	4.2.	Solid-liquid transition temperature T_m	10			
		4.2.1. T _m of isolated nanocrystals	10			
		4.2.2. T_{m}^{m} of nanosized solid solution and eutectic binary allows	10			
		4.2.3. $T_m^{(m)}$ of nanoparticles embedded in matrices	11			
	4.3	Solid-vapor transition temperature	13			
	4.4	Delve temperature	13			
	45	Einstein temperature	14			
	4.6	Melting enthalny	14			
	4.0.	Size-temperature_composition place diagrams	15			
	4.7.	Size temperature preserve phase diagrams	15			
	4.0.	A 9 1 Pontacona thin films	15			
		4.0.1. Pentacene unin minis	13			
		4.6.2. Sinver hallocitystals.	1/			
-			18			
5.	Magn	euc properties.	20			
	5.1.	Curie temperature.	20			
_	5.2.	Order-disorder transition temperature	20			
6.	Photo	oelectric behaviors	21			
	6.1.	Bandgap energy	21			
	6.2.	Raman red shift	26			
	6.3. Molar extinction coefficient					
7.	Thern	moelectric phenomena	30			
	7.1.	Thermal conductivity and diffusivity of nanocrystals	30			
	7.2.	Thermal conductivity of nanoporous and nanostructured bulk materials	31			
8.	Mech	nanical properties	33			
	8.1.	Young's modulus	33			
	8.2.	Inverse Hall–Petch relationship	33			
9.	Electr	rical properties	33			
	9.1.	Electrical conductivity	33			
	9.2.	Relative permittivity	34			
10.	Other	r physicochemical properties	34			
	10.1.	Volume thermal expansion coefficient	34			
	10.2.	Mass density	34			
	10.3.	Catalytic activation energy	34			
	10.4.	Diffusion activation energy	34			
	10.5.	Vacancy formation energy	35			
11.	Futur	re work	35			
	Ackno	owledgements	36			
	Refer		36			
	neren		50			

List of symbols and abbreviations

а, с	lattice parameter
<i>a</i> _h	hole Bohr radius
A _c	a material constant
A_m	gram-atom (g-atom) surface area
b	bowing parameter
В	bulk modulus
BOLS	bond-order-length-strength
C _G	Gruneisen constant
Ci	coordination number-dependent reduction of
	bond length
С	a constant
C_p	heat capacity
C_{ν}	equilibrium vacancy concentration
<i>C</i> ₀	a size-independent pre-exponential coefficient
d	dimensionality of materials
d _{hkl}	inter-planar distance of (<i>hkl</i>)
D	thermal diffusivity

D_d	diffusion coefficient
DFT	density functional theory
D_0	a size-independent pre-exponential coefficient
е	electrical charge of one electron
E_a	first absorption peak energy
EAM	embedded-atom method
E _c	cohesive energy
E_{ca}	catalytic activation energy
E_d	diffusion activation energy
E_{exc}	spin-spin exchange interaction
E_g	bandgap energy
$E_{l\nu}$	lattice thermal vibrational energy
E_r	exciton Rydberg energy
E_{ν}	vacancy formation energy
f	surface stress
fwhm	full width at half-maximum
FGS	fullerene-like graphite shells
G	Gibbs free energy

Download English Version:

https://daneshyari.com/en/article/1532407

Download Persian Version:

https://daneshyari.com/article/1532407

Daneshyari.com