S.S. C. B. ELSEVIER

Contents lists available at ScienceDirect

Materials Science and Engineering R

journal homepage: www.elsevier.com/locate/mser

Principles and applications of micro and nanoscale wrinkles

Yongfeng Mei a,b,*, Suwit Kiravittaya a, Stefan Harazim a, Oliver G. Schmidt a

ARTICLE INFO

Article history:

Available online 29 June 2010

Keywords: Wrinkle Rolled-up Nanotech Nanochannel nanofluidics Graphene

ABSTRACT

In this review, we summarize recent and interesting applications of micro and nanoscale wrinkles. Fluidic studies are comprehensively highlighted for various wrinkled nanochannels. Wrinkling as a mechanical characterization tool is also explained. As a new feature, wrinkles are employed to modify structures or physical properties of nanomaterials. It is promising to apply wrinkling for strainengineering of graphene. We believe that wrinkling offers entirely new research perspectives in micro and nanotechnologies as well as in material sciences and engineering.

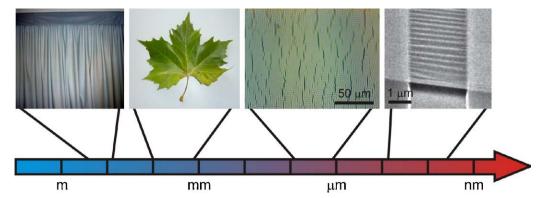
© 2010 Elsevier B.V. All rights reserved.

Contents

1.	Introduction			209
	1.1.	Wrinkle	·s	209
	1.2.	Wrinkle	s in micro and nanotechnologies	211
	1.3. Overview			211
2.	Wrinkles for micro and nano-fluidic applications			212
	2.1.	Wrinkle	rd-up micro/nanochannels by releasing semiconductor layers	212
		2.1.1.	Deterministic fabrication of wrinkled-up micro/nanochannels	212
		2.1.2.	Self-assembly of two-dimensional micro/nanochannel networks	214
		2.1.3.	Release and bond-back effect in channel formation	214
		2.1.4.	Strain and optical properties of individual wrinkled micro/nanochannels	215
		2.1.5.	Fluidic behavior in wrinkled micro/nanochannels	216
	2.2.	Wrinkles on surface-treated plastic substrates for elastic nanochannels		217
		2.2.1.	Nanochannel formation on plasma-oxidized PDMS substrates	217
		2.2.2.	Tunable fluidic nanochannels for particle and DNA manipulation	218
	2.3.	Wrinkled surfaces as micro/nanofluidic templates and sieves		218
		2.3.1.	Basic principles of wrinkled templates and sieves	218
		2.3.2.	Reversible wrinkling for controllable transfer of colloidal patterns	220
3.	Wrinkling for mechanical characterization at micro/nanoscales			220
	3.1.	.1. Buckling-based metrology		
	3.2.	Capillar	y wrinkling	221
4.	Wrinkling as a new feature in nanostructures			221
	4.1.			
	4.2.	4.2. Wrinkled-up graphene for strain-engineering		
5.	Conclusions and outlook			223
	Acknowledgements			223
	References			223

1. Introduction

1.1. Wrinkles


A wrinkle can be a fold, ridge or crease in the skin and normally appears when one becomes old. It thus enables a huge market for

^a Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany

^b Department of Materials Science, Fudan University, Shanghai, 200433, Peoples's Republic of China

^{*} Corresponding author.

E-mail address: y.mei@ifw-dresden.de (Y. F. Mei).

Fig. 1. Observation of wrinkling phenomena in nature. The dimensions (periodicity and amplitude) of wrinkles span across many length scales (from meters to nanometers). For example: (from left to right) a hanging-down curtain, a drying leaf, Al₂O₃ thin films on PDMS substrate, and stretched graphene sheets [1]. Reprinted with permission from Macmillan Publishers Ltd.: *Nature Nanotechnology* [1], copyright (2009).

anti-wrinkle cream etc. Although such wrinkles are very critical for the skin of human beings, wrinkling is a very general phenomenon in nature with dimensions (like periodicity and amplitude) spanning across length scales from meters down to nanometers. Basically, when a layer or sheet is forced to extend or shrink in its plane, it will be wrinkled or buckled in the perpendicular direction if there is limited planar space due to certain geometrical boundary conditions. As shown in the first image of Fig. 1 (from left to right), a curtain hanging down from the ceiling assumes a wrinkled shape on the decimeter scale since the curtain sheet is geometrically constrained in the plane. In the second image, when a leaf drops down to the ground, it dries out and experiences a centimeterscale buckling at the edge, which is similar to human skin wrinkling or dried wizen fruits. In conventional thin film deposition technology, delaminated films often show buckles (wrinkles or blisters) due to the high compressive stress. As illustrated in the third image of Fig. 1, a thin oxide film deposited on a poly-(dimethyl)siloxane (PDMS) substrate shows a regular pattern of wrinkles at a scale of microns after cooling down. Here, the wrinkling is mainly due to the different thermal expansion coefficients between oxides and plastic. People have also created nanoscale wrinkles or buckles with the aim to change the electronic properties of materials. As shown in the right image of Fig. 1, a graphene sheet is wrinkled by controlled thermal treatment, which might open a way to strain-engineer a bandgap in graphene [1].

The study of wrinkles interacts with many other scientific disciplines and establishes a technological platform for plenty of interdisciplinary research. It has been observed by George M. Whitesides that wrinkling of thin metal films on PDMS substrates can be used to create ordered microstructures [2]. After that, a lot of effort has been dedicated to study and understand wrinkled pattern formation [3.4]. Theoretically, wrinkling involves large deformations of thin flat sheets whose behavior is governed by a set of non-linear partial differential equations, known as the Föpplvon Karman equations [5]. In general, these equations cannot be solved analytically except in some one-dimensional cases. Since this topic has been extensively reviewed previously [3,4], we will not focus on the quantitative pattern formation, itself. Instead, we concentrate on the underlying principles and applications of micro and nanoscale wrinkles, leaving out extensive theoretical modeling and computation. We expect that our topical review will be helpful to elucidate the huge application potential of wrinkles in micro and nanotechnologies.

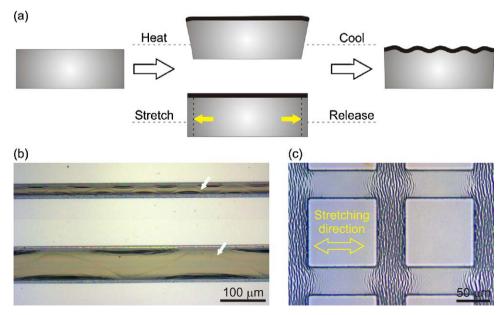


Fig. 2. (a) Procedures for wrinkling on PDMS. The PDMS substrates are heated or stretched for volume expansion and subsequently coated with thin layers. Upon cooling or releasing, the coated layers form wrinkled patterns. (b) Wrinkled patterns exhibit a sinusoidal feature for Al₂O₃-coated photoresist layers fabricated by atomic layer deposition by using the principle of heating and cooling shown in (a). (c) Wrinkled patterns formed by stretching, Al₂O₃ coating and relief of a PDMS substrate.

Download English Version:

https://daneshyari.com/en/article/1532487

Download Persian Version:

https://daneshyari.com/article/1532487

<u>Daneshyari.com</u>