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Abstract

Here, we develop a nonlocal homogenization model to characterize the electrodynamics of an array of cubic particles made of
resonant rings. The effective parameters are calculated from the microscopic fields produced by a periodic external excitation. It is
confirmed that the spatial dispersion effects cannot be neglected in the regime where μ ≈ 0. We demonstrate that when the array of
resonant rings is combined with a triple wire medium formed by connected wires, the structure may behave approximately as an
isotropic left-handed material.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Structured materials with a strong magnetic response
have been under intense research in recent years [1–10],
mainly due to their potential applications in the design
of imaging systems with improved resolution [2–5]. In
particular, it was recently demonstrated that a metama-
terial lens formed by split-ring resonators (SRRs) boosts
the sensitivity of the coil used in magnetic resonance
imaging when operated in the regime μ = −1 [6].
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In most of the studies published in the literature, it
is typically assumed from the outset that the response
of the metamaterial is local, and, based on that assump-
tion the effective parameters are usually calculated using
the retrieval procedure reported in Ref. [11] (inversion
of the scattering parameter data). Recently, in Ref. [12]
the Lorentz local field theory was used to homogenize
a metamaterial formed by an array of cubic particles
with tetrahedral symmetry formed by split-ring res-
onators (a topology similar to that considered here), and
the nonlocal magnetic permeability was calculated. It
was demonstrated that the spatially dispersive model
provides a unified description of the transverse electro-
magnetic waves and of the so-called magnetoinductive
waves [13], demonstrating in this manner that the lat-
ter are a short-wavelength continuation of the former. In
this work, we investigate a problem closely related to
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Fig. 1. Geometry of the unit cell of a structured material formed by res-
onant rings. The figure depicts the particular case in which the resonant
particles are SRRs.

that considered in Ref. [12] but from a different perspec-
tive. Instead of applying the Lorentz’s local field theory,
we compute the nonlocal parameters using the homoge-
nization method proposed in the works [14,15], which is
based on the idea of exciting the metamaterial with a peri-
odic source with suitable phase-shift. We obtain the exact
solution (taking into account the interaction between all
the particles in lattice) of the homogenization problem
under the approximation that the response of the inclu-
sions can be described using the dipole approximation,
and an explicit formula for the nonlocal magnetic per-
meability is derived. The results of the analytical model
are compared with the effective parameters obtained with
full wave simulations that take into account all the details
of the microstructure of the material. Finally, we study
the electrodynamics of a system formed by the array of
SRRs and a connected array of wires. It should be men-
tioned that other previous works (e.g. Ref. [16]) have
studied the homogenization of arrays of SRRs taking
into account rigorously the mutual effects and lattice
ordering. The main contribution of our analysis, which
extends our previous work [12], is the characterization
of the spatial dispersion effects.

2. Homogenization

A representative geometry of the unit cell of the mate-
rial under analysis is shown in Fig. 1. The unit cell
contains three different resonant metallic rings, being
each ring normal to one of the Cartesian axes. The lattice
is simple cubic with lattice constant a. Clearly, each basic
inclusion has an anisotropic response, but in the long
wavelength limit the response of the composite material
is approximately isotropic due to the spatial arrangement
and orientation of the particles. The ith resonant ring in

the unit cell is by definition normal to the unit vector ûi

(i = x, y, z), and is centered at the point r0,i = − (a/2) ûi.
The resonant rings are generic planar (or quasi-

planar) inclusions, which may be produced by some
lumped or distributed capacitance. We suppose that
the rings can be characterized by an impedance
Z0 = jωL + 1/(jωC) obtained from a circuit model (for
simplicity the effect of metallic loss is neglected; see
Refs. [17,18] for the particular case of SRRs). The res-
onant rings will be modeled as dipole-type magnetic
particles characterized by a uniaxial magnetic polar-
izability dyadic (tensor). The magnetic polarizability
dyadic of the ith ring is

¯̄αi = αmûiûi, (1)

where ûiûi ≡ ûi ⊗ ûi represents the dyadic (tensor)
product of two vectors. The parameter αm (with unities
[m3]) is related to the impedance Z0 as follows (including
the effect of the radiation loss)
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where α−1
0 = L/μ0A

2, A is the area of the ring and ωr =
1/

√
LC.

For simplicity, it will be assumed that the rings do
not have an electric response (i.e. that the electric polar-
izability vanishes; in Section 3, we will discuss how to
incorporate the electric response in the model). Thus, at
a microscopic level, the magnetic dipole moment of the
ith particle in the unit cell, pi, must verify:

pi

μ0
= ¯̄αi · Hloc

(
r0,i

)
, i = x, y, z, (3)

where Hloc is the local magnetic field that polarizes the
pertinent ring. The magnetic dipole pi as defined above
is related to the more traditional definition given in text-
books (e.g. Ref. [19]) as m = pi/μ0.

2.1. Two models for the response of the rings

It is possible to model the response of the resonant
rings using two alternative approaches. The first model
takes into account that the rings are metallic particles,
and thus that an external field induces a microscopic
electric current density in each ring. Since it is assumed
that the rings only have a magnetic response, which is
necessarily caused by the vortex part of the induced elec-
tric current (artificial magnetism), the induced current is
related to the magnetic dipole moments as follows (see
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