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a b s t r a c t

A theoretical procedure is developed for the calculation of the electromagnetic fields scattered by a
spheroidal object with arbitrary monochromatic illumination. The suggested solution utilizes the
method of moments technique in a spheroidal coordinate system. For oblique incidence of a Gaussian
beam and zero-order Bessel beam, numerical results of the normalized differential scattering cross
section are presented, and the scattering characteristics are analyzed concisely.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of electromagnetic (EM) scattering by a spheroidal
object, for incidence of a plane wave or a Gaussian beam, has been
investigated extensively by so many researchers. Based on the
fundamental method of separation of variables for the vector wave
functions in the spheroidal coordinate system, Asano et al. studied
in detail the EM scattering of a linearly polarized plane wave by a
homogeneous isotropic spheroid with any size and refractive in-
dex [1,2]. The case of a multilayered spheroid has been treated by
the extended boundary condition method (EBCM) [3]. For an in-
cident Gaussian beam, Barton has calculated the intensity dis-
tributions internal and external to a spheroid with arbitrary illu-
mination [4,5]. Within the generalized Lorenz–Mie theory (GLMT)
framework, Han et al. provided an analytical solution to the scat-
tering of an on-axis and off-axis Gaussian beam by a spheroidal
object [6,7].

Recently, we have analyzed the scattering of a Gaussian beam
for oblique incidence on a spheroidal object, by expanding the
Gaussian beam as an infinite series of spheroidal vector wave
functions (SVWFs) [8,9]. In our method, it is necessary to have the
SVWFs expansion of the incident Gaussian beam. But, such an
expansion is usually too difficult to obtain for some shaped beams
as the zero-order Bessel beam (ZOBB), Hertzian electric dipole
radiation, and so on. In this paper, based on the method of mo-
ments (MoM) procedure, an exact semi-analytical solution is
presented to the scattering of an arbitrarily shaped beam by a
spheroidal object.

The paper is organized as follows. In Section 2, a theoretical
procedure is provided for the determination of the scattered fields
of a shaped beam by a spheroidal object. Section 3 discusses
concisely the scattering characteristics of a Gaussian beam and a
ZOBB. The main findings are summarized in Section 4.

2. Formulation

As schematically shown in Fig. 1, an arbitrarily shaped beam
propagates in free space and from the negative ′z to the positive ′z
axis in its own Cartesian coordinate system ′ ′ ′ ′O x y z . The system

′′ ′′ ′′Ox y z is parallel to ′ ′ ′ ′O x y z , with origin O having the Cartesian
coordinates ( )x y z, ,0 0 0 in ′ ′ ′ ′O x y z . A spheroidal object (semifocal
distance, semimajor and semiminor axes respectively denoted by
f , a and b) is natural to the system Oxyz , which is obtained by
rotating ′′ ′′ ′′Ox y z through a single Euler angle β [10]. In this paper,
a time dependence of the form ω( − )i texp is assumed and sup-
pressed for the EM fields.

According to the radiation condition of an outgoing wave, an
appropriate expansion of the scattered fields in terms of the
SVWFs with respect to Oxyz can be written as [9,11]
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where =c kf , and k, η0 are the free space wave number and
wave impedance.

For a dielectric spheroidal object, the internal fields can be
expanded in terms of appropriate SVWFs as follows:

∑ ∑ δ δ γ

γ

=

( ) + ′ ( ) + ′ ( )

+ ( ) ( )

=

∞

=

∞
( ) ( ) ( )

( )

⎡⎣
⎤⎦

E

i c c i c

i c

E

M M N

N 3

w

m n m

n
mn emn

r
mn omn

r
mn emn

r

mn omn
r

0

0

1
1

1
1

1
1

1
1

∑ ∑

η

δ δ γ

γ

=

−

( ) + ′ ( ) + ′ ( )

+ ( ) ( )

=

∞

=

∞
( ) ( ) ( )

( )

⎡⎣
⎤⎦

i
E

i c c i c

i c

H

N N M

M 4

w

m n m

n
mn emn

r
mn omn

r
mn emn

r

mn omn
r

0

1

0

1
1

1
1

1
1

1
1

where =c fk1 1, = ˜k kn1 , η η= ñ/1 0 , and ñ is the refractive index of the
material of the dielectric spheroid relative to that of free space.

In the MoM scheme, Eqs. (1)–(4) can be interpreted that the
expansions of the scattered and internal fields are obtained using
appropriate SVWFs as basis functions.

The boundary conditions require that the tangential compo-
nents of the EM fields be continuous

^ × ( + ) = ^ × ( )n nE E E 5s i w

^ × ( + ) = ^ × ( )n nH H H 6s i w

where Ei and Hi respectively represent the electric and magnetic
fields of the incident shaped beam, and n̂ denotes the outward
normal to the spheroidal object's surface S.

Substituting Eqs. (1)–(4) into Eqs. (5) and (6), we can obtain
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Multiplication of Eq. (7) with ′ ′( )( ) cMom n
r 1

1 , ′ ′( )( ) cNem n
r 1

1 respectively
and integration over the surface S lead to
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In deriving Eqs. (9) and (10), we have used the well-known
orthogonality relations among the trigonometric functions ϕmsin
and ϕmcos , and considered the following expression

( ) ( )ζ ζ η ζ η ϕ^ = − − ^
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2 2
1
2 2 2

1
2

where ζ = a f/ (a constant over the surface of the spheroid S),
η ∈ −⎡⎣ ⎤⎦1, 1 and φ π∈ ⎡⎣ ⎤⎦0, 2 are the radial, angular and azimuthal

coordinates in the spheroidal coordinate system, and ζ̂ , equivalent
to n̂, is the outward unit normal vector.

Multiplicating Eq. (8) with ′ ′( )( ) cMem n
r 1

1 , ′ ′( )( ) cNom n
r 1

1 and integrating
over the surface S, we can have

Fig. 1. A spheroidal object illuminated by an arbitrarily shaped beam.
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