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a b s t r a c t

The far-zone correlation between intensity fluctuations with polychromatic beams generated by quasi-
homogeneous sources is investigated by giving two illustrative examples. The analyses show that, in
general, the frequency components of correlation between intensity fluctuations may change on pro-
pagation. Moreover, we have discussed the extreme case of critical angle at which no frequency shift
occurs, and also proposed the so-called scaling law for correlation between intensity fluctuations.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Correlation between intensity fluctuations is of considerable
interest, apart from being originally introduced to determine the
angular diameters of radio stars [1], as well as many potential
applications in various areas [2–4]. Most especially, it is used in the
area of ghost imaging as a tool for retrieving an object's trans-
mittance pattern more recently [5–7]. And the measurements of
the correlation between intensity fluctuations can be acquired
through the well-known Hanbury Brown and Twiss (HBT) ex-
periment, which was conducted for the first time in 1950s [8].

The topic associated with correlation between intensity fluctua-
tions generated by stochastic electromagnetic fields has been studied
extensively in connection with propagation through free space [9–11],
or scattering by random media [12,13]. However, the sources utilized
in the most of previous investigations are confined to be monochro-
matic light or quasi monochromatic light. Besides, as far as we know,
very little attention has been paid to the influence of frequency on the
correlation between intensity fluctuations. And only recently has the
closely related analysis on the ghost image, which strongly depends on
the intensity fluctuations, been made with two wavelengths or multi
wavelengths [14,15]. Among which the obtained results show some-
what distinctly from those by quasi monochromatic light, and this
underlines the significant effect of the wavelength on the intensity
fluctuations to some extent. So it is natural to ask how the correlation
between intensity fluctuations will behavior with polychromatic

beams. To this end, we examine in this paper theoretically the de-
pendency of the normalized correlation between intensity fluctuations
on the source correlation, such as the frequency components and
observation directions.

2. Theory

First we begin by reviewing some basic results of the correla-
tion between intensity fluctuations for following analysis. To do
this, we consider the fluctuation in intensity of a field ρ ω( )E , at a
point ρ and frequency ω, which is governed by

ρ ρ ρω ω ωΔ ( ) = ( ) − ⟨ ( )⟩ ( )I I I, , , , 1

where the angular brackets denote the ensemble average, and
ρ ω( )I , means the instantaneous intensity and is calculated from

ρ ρ ρω ω ω( ) = *( ) ( ) ( )I E E, , , , 2

here the star denotes the complex conjugate.
Making an assumption that the fluctuations of the field obey

the Gaussian statistics, and using the moment theorem for com-
plex Gaussian random process [16], then it follows that correlation
between intensity fluctuations at two points takes the form

ρ ρ ρ ρ ρ ρω ω ω ω( ) ≡ ⟨Δ ( )Δ ( )⟩ = ( ) ( )C I I W, , , , , , , 31 2 1 2 1 2

2

where ρ ρ ρ ρω ω ω( ) = *( ) ( )W E E, , , ,1 2 1 2 is the cross-spectral den-
sity, used to describe the statistical properties of the beam at a pair
of points.
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Next let us consider a planar, secondary, quasi-homogeneous
source (see Fig. 1), for which the expression of the cross-spectral
density can be approximated by the formula [16]

ρ ρ ρ ρ ρ ρω ω μ ω( ) ≈ (( + ) ) ( − ) ( )( ) ( ) ( )W S, , /2, , . 4
0

1 2
0

1 2
0

2 1

Recalling that the expression for the cross-spectral density of
the far field is derived to be

ω
π θ θ

ω( ) =
( ) ˜ ( − )

( )
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⊥ ⊥s s s sW r r
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where the phase term ( − )⎡⎣ ⎤⎦ik r rexp 2 1 along the axis between the
two reference planes has been omitted, θ1 and θ2 denote the angles
which the unit vectors s1 and s2 make with the positive z-axis,

with ⊥s being the projection, ω˜ ( − )
( )

⊥ ⊥s sW k k, ,
0

1 2 is the four-di-
mensional spatial Fourier transform of the cross-spectral density
in the source plane, i.e.
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where ˜( )
S

0
and μ̃( )0 are the two-dimensional Fourier transforms of

( )S 0 and μ( )0 , respectively:

∫ ρω
π

ω ρ ρ˜ ( ) =
( )

( ) ( − ⋅ )
( )
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2
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On substituting from Eq. (6) into Eq. (5), then it follows im-
mediately that
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Finally, after inserting Eq. (9) into Eq. (3) the following ex-
pression for the correlation between intensity fluctuations at far
field is obtained to be
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This is a general formula by which correlation between intensity
fluctuations generated by a quasi-homogeneous source may be dis-
cussed. And it is to be noted that the angular dependence of correla-
tion between intensity fluctuations is not only given by the factor

θcos i
2 , (i¼1, 2), but also dependent on the directional vector s of the

spectral density and the spectral degree of coherence of the source.

3. Two examples

To better illustrate how the relative correlation between in-
tensity fluctuations behaviors after propagation, we proceed with
a normalized formalism, which is similar to that describing the
spectral changes [17–19]. The normalized correlation between in-
tensity fluctuations is introduced to be

∫
ω

ω
ω ω

( ) =
( )
( ) ( )

(∞)
(∞)

∞ (∞)s s
s s

s s
C r r

C r r

C r r
, ,

, ,

, , d
.
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In view of Eqs. (10) and (11), it is readily observed that
ω( )(∞) s sC r r, ,N 1 1 2 2 is essentially determined by the square of two-

dimensional spatial Fourier transform of the spectral density of the
source and the state of coherence across the source. One may have
noticed that if taking the dependency of coherence part on fre-
quency into account, the calculation of the integration in Eq. (11)
will become too tedious. Hence, we refer to the treatment about
spectral changes on propagation [17–19], considering two typical
examples in which only the source spectrum depends on
frequency.

First a special case is the source with the same spectrum at
each point and possessing a Gaussian spectral profile with band-
width Γ0 [17,18], it is
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( ) ≡ ( ) = −

( − )

( )
( ) ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥S S, exp

2
.

12
0 0 0

2

0
2

The part of the degree of coherence across the source plane also
takes a Gaussian form
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where δ measures the coherence length, all these parameters are
effectively independent of the frequency.

On substituting from Eqs. (7), (8), (10), (12) and (13) into the
formula (11), and using a more compact form
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One can obtain the expression for the far-zone normalized
correlation between intensity fluctuations

∫

ω

ω ω δ θ θ

ω ω δ θ θ ω

α ω

π ω
α ω ω

( )

=
( ) − ( + )

( ) − ( + )

=
′ + +

− ( − ′ )

( )
ω

α α

(∞)

( )

∞ ( )

′⎜ ⎟

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦

s sC r r

S k

S k

, ,

exp sin sin /4

exp sin sin /4 d

exp .

15

N 1 1 2 2

4 0 2 2
1 2

2 2

0
4 0 2 2

1 2
2 2

1
4

0
4 3 3

4

1
2

0
2

0
2

1
2

1
4

On the above evaluation, for convenience we have assumed
Γ ω ≪/ 10 0 , which means the rms width of the Gaussian distribution
of the above integration is much smaller than ω0, under this cir-
cumstance the lower zero limit could be replaced by −∞, at a good
approximation.

From Eq. (15) one may notice that, different form the normal-
ized correlation between intensity fluctuations of the source,
which keeps the same at each point, ω( )(∞) s sC r r, ,N 1 1 2 2 depends on
the direction of observation. And only when θ θ= = 01 2 , i.e., for on-
axis points, ω ω′ =0 0 holds. Otherwise, the Gaussian distribution is
centered at a lower frequency than the Gaussian distribution that

Fig. 1. Illustrating the notation relating to radiation from a planar, secondary quasi-
homogeneous source σ .
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