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a b s t r a c t

Quantum mechanical treatment of a light wave that propagates through an absorptive medium is pre-
sented. Unlike a phenomenological beam-splitter model conventionally employed to describe a traveling
light in a lossy medium, the time evolution of the field operator is derived using the Heisenberg equation
with the Hamiltonian for a physical system, where the light wave interacts with an ensemble of two-
level systems in a medium. Using the obtained time-evolved field operators, the mean values and var-
iances of the light amplitude and the photon number are evaluated. The results are in agreement with
those obtained in the beam-splitter model, giving a logical theoretical basis for the phenomenological
beam-splitter model.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Quantum fluctuations or quantum noises are of fundamental
interest in quantum optics, including inherent fluctuations in co-
herent states and squeezed states, vacuum fluctuations, and
quantum-limited noise figures in phase-insensitive or phase-sen-
sitive optical amplifiers. It is well known that quantum properties
of a light wave are affected by propagating loss in a medium.
Conventionally, traveling light in a dielectric medium was quan-
tum mechanically treated with a quantum mechanical version of
the Maxwell's equations that includes a phenomenological noise
field operator or an operator phenomenologically representing an
absorption phenomenon [1–7]. A spatial differential equation of
the light field operator (annihilation operator) was derived from
the quantum mechanical Maxwell's equations, by which quantum
properties of a traveling light was analyzed. A beam-splitter model
was also suggested similar to the spatial differential equation [8–
15], in which a noise field operator is assumed to be overlapped
onto the attenuated light field operator via a beam splitter re-
presenting a loss phenomenon. This beam splitter model has been
widely utilized in considering quantum properties of light wave
propagating in a lossy medium because of its simplicity.

In a beam-splitter model, the in-out relationship of the light
field operator through a loss medium is expressed as [8,15]

^ = ˜^ + ˜^ ( )a ta ra 1out in vac

with | ˜| + |˜| =t r 12 2 , where âin and âout are the field operators at the
input and output of the medium, respectively, âvac is the vacuum
field (or noise field) operator, and t̃ and r̃ are the amplitude
transmittance and reflectance of a beam splitter, respectively. The
first term in Eq. (1) represents the attenuation of the incident light,
and the second term represents a noise field overlapped with the
incident light caused by a reaction of some loss mechanism. While
this beam-splitter model is convenient and useful, it was phe-
nomenologically presented, not directly derived from the first
principles of quantum mechanics. To the best of the author's
knowledge, a logical derivation from the fundamentals of the
quantum mechanical theory has not been reported.

Based on the above background, this paper presents a quantum
mechanical description of a light wave passing through an ab-
sorptive medium. Interactions between light and an ensemble of
two-level systems are assumed to cause attenuation of a traveling
light, and the space evolution of the light wave state is derived
using the Heisenberg equation with the Hamiltonian for such a
physical system. The results are in agreement with those obtained
in the beam-splitter model, thus providing a theoretical justifica-
tion of the phenomenological beam-splitter model.

2. Theoretical treatment

2.1. Time evolution of the field operator

We consider an absorptive medium, in which traveling light is
attenuated through interaction with an ensemble of two-level
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systems [16]. The Hamiltonian for such a physical system is ex-
pressed as [15]

∑ ∑ω ω π π α π α π^ = ℏ ^ ^ + ℏ ^ ^ + ℏ( ^ ^ − *^ ^ )
( )

† ( ) † † †
H a a i a a .

2j
m

j
j j

j
j j j j

The first, second, and third terms represent the Hamiltonians
for the light field, an ensemble of two-level systems in the med-
ium, and the interaction between the light and the two-level

systems, respectively. Here, â and ^†
a are the annihilation and

creation operators of light, respectively; π̂ = | > < |2 1 and

π̂ = | > < |†
2 1 are the transition operators of a two-level system in

the medium with |24 and |14 denoting the upper and lower
energy levels, respectively; ℏ is the reduced Planck's constant; ω is
the lightwave angular frequency; ωℏ m is the energy difference
between the two levels; αj is a proportional constant; and the
subscript j labels the two-level systems.

The time evolution of the field operator and the transition

operators is governed by the Hamiltonian Ĥ of the composite
system through the Heisenberg equation:

∑ω α π
^

=
ℏ

[^ ^] = − ^ − ^
( )

da
dt i

a H i a
1

, ,
3aj

j j
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⎦
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These equations can be simplified by rewriting the operators as
^ → ^( ) ω−a a t e i t and π π^ → ^ ( ) ω−t ej j

i tj :

∑ α π
^

= − *^
( )

ω ω− ( − )da
dt

e ,
4aj

j j
i tj

π
α π π π π α

^
= (^ ^ − ^ ^ )^ = Π̂ ^

( )
ω ω ω ω† † ( − ) ( − )d

dt
ae ae , 4b

j
j j j j j

i t
j j

i tj j

where π π π πΠ̂ ≡ ^ ^ − ^ ^† †
j j j j j is a shorthand notation.

We solve Eqs. (4) by employing an iterative approximation.
First, the first-order solutions are obtained by substituting the

initial values { ^( )
a

0
, π̂ ( )

j
0
} into the right-hand side of Eqs. (4):

∑ α π
^

= − *^
( )

ω ω( ) − ( − )da
dt

e ,
5aj

j j
i t0 j

π
α

^
= Π̂ ^

( )
ω ω( ) ( ) ( − )d

dt
a e . 5b

j
j j

i t0 0
j

The solutions of these equations are

∑ α
ω ω

π^( ) = ^ − * −
−

^
( )

ω ω( ) − ( − )
( )

a t a i
e 1
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Next, we substitute these first-order solutions into the right-
hand side of Eq. (4a):

∑

∑

∑
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The solution of this equation is given by
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We assume the interaction time is short and consider the above
expression of ^( )a t as the solution of Eq. (4a).

2.2. Physical quantities

Physical quantities of a light wave are expressed in terms of
expectation values of ^( )a t in an initial state of the composite sys-
tem under consideration. The mean amplitude is given by

Ψ Ψ< > = < |^( )| >a a t0 0 , where |Ψ04 is an initial state of the compo-
site system of light and medium. Here, we are considering an
absorptive medium, not an amplifying one, and thus, we assume
that all two-level systems are initially in the lower energy states.
Such an initial state can be expressed as

Ψ Ψ Ψ> = > ⊗ > ( )
( ) ( )

9r m0
0 0

with

Ψ| > = ⊗ | >
( )

( ) 1 ,
10j

jm
0

where |Ψr
(0)4 and |Ψm

(0)4 denote the initial states of the light
and the medium, respectively. Applying this initial state to the
time-evolved field operator ^( )a t given by Eq. (8), we find that the
mean amplitude of the light wave at time t is

∑ α
ω ω

ω ω
< ( ) > = < ( ) > − | |

− − ( − )

( − ) ( )
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1
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where Ψ Ψ< ( ) > ≡ < ^ >( ) ( ) ( )a a0 r r
0 0 0 , and Ψ π π Ψ< ^ ^ >( ) ( ) ( )† ( )

m j j m
0 0 0 0 ¼1,

Ψ π π Ψ< ^ ^ >( ) ( )† ( ) ( )
m j j m

0 0 0 0 ¼0, and Ψ π Ψ< ^ >( ) ( ) ( )
m j m

0 0 0 ¼0 have been used to

obtain the result.
The second term in Eq. (11) includes information of the energy

states in the medium, which can be simplified as follows. First, we
decompose the second term into the real and imaginary parts as

∑

∑ ∑
( )
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α
ω ω
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ω ω ω ω

ω ω
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12

e i t

t
i

t t

1

2
sin /2 sin

.

j
j

i j t
j

j

j
j

j

j j
j

j j

j

2
2

2
2

2
2

2

Under the condition that the energy states are densely dis-
tributed in the frequency domain, the summation in the real part
can be replaced by an integral, i.e.,
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