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ABSTRACT

The data on subaperture in this paper is collected by a Hartmann test device or a Hartmann-Shack
wavefront sensor. The slope data on each subaperture of the test optical component is obtained via the
linear least squares fitting routine in this paper. Importantly, the error transfer formulas are deduced
when the measurement data are polluted by the random noise, which will affect the uncertainty of
stitching parameters, such as tilt or defocus. In particular, the accuracy formulas for stitching evaluation,
which can be used to calculate the stitching error of each point on each subaperture for both the parallel
mode and the serial mode, are derived mathematically. Therefore, this paper provides these formulas to
estimate exactly the stitching error in each subaperture if the variance of random noise has been esti-
mated and if the overlapping area is also given in advance. The results of simulation experiments show
that the stitching accuracy formulas proposed are verified and they can be used to evaluate stitching
accuracy. The reason why the error of the parallel stitching mode is less than that of the serial stitching
mode is presented theoretically.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the development of science and technology, large optical
components are widely used in space telescopes [1,2], laser fusion
systems [3,4] and other aspects. In traditional optical measurements,
the large optical surface is tested by a large-scale interferometer.
However, the interference testing method requires a flat reference,
and most interferometers are sensitive to the measurement en-
vironment. As a result, the cost of a large-scale interferometer is
greatly increased, and good environment control is required for
testing [5,6]. In 1982, the subaperture measuring method was first
introduced in interferometric metrology by CJ. Kim at the Optical
Sciences Center at the University of Arizona, [7]. Since the method
was proposed, it has been widely used in the measurement of large
aperture optical elements. More recently, subaperture stitching in-
terferometry is becoming increasingly popular. In 1994, Otsubo
proposed a global subaperture stitching method based on stitching
parameters; in this method, the misalignment errors is simulta-
neously fitted and obtained over multiple overlapping subapertures
[8]. In 2003, QED Technologies successfully developed an automated
subaperture stitching interferometer. This interferometer can suc-
cessfully test the surface of flat and spherical optical elements with
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diameters of less than 200 mm [9]. Moreover, research studies have
also focused on the analysis of the accuracy of subaperture stitching.
To date, there are three types of methods to evaluate the accuracy of
subaperture stitching technique. In the first type, the stitching results
are compared with the results of the full aperture interferometry;
this method of evaluation is the most simple and straightforward one
[10]. In the second type, the effect of random noise and overlapping
area on the stitching parameters is qualitatively analyzed. This
method can only obtain the error of the stitching parameters be-
tween two adjacent subapertures and it cannot obtain the error of
each point on each subaperture after the subaperture stitching pro-
cedure is completed [8,11]. In the third type, according to the
knowledge of statistics, the proportion of the regression sum of
squares of the phase difference to the total sum of squares of the
phase difference is used to evaluate the accuracy of the stitching [12].

Different from the traditional subaperture stitching method
based on wavefront measurements, the subaperture wavefront
slope stitching test is based on a Hartmann-Shack wavefront
sensor [13]. Hartmann-Shack sensors have the advantages of in-
sensitivity to the air disturbance and vibration, rapid testing and
high dynamic range. In addition, subaperture wavefront slope
stitching tests can avoid the influence of the piston. Thus, this
method has a unique advantage in the testing of a large aperture
optical element. Due to these characteristics, an increasing num-
ber of scholars are studying the subaperture wavefront slope
stitching testing method [14-16]. Currently, research studies on
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wavefront slope stitching are mainly focused on the establishment
of the mathematical mode and qualitative analysis of the stitching
error. However, no mathematical formula is available to evaluate
stitching accuracy when random noise exists in measurement
process. In this paper, we describe in detail the following: 1) the
effect of random noise and overlapping area on the stitching
parameters and 2) the error relationship between the stitching
parameters and the adjusted slope. Importantly, the error transfer
formula for the slope stitching is first determined. On this basis,
the respective formulas for solving the accuracy of serial slope
stitching mode and parallel slope stitching mode are derived. This
paper shows that these formulas are verified by our simulation
experiments. The RMS and PV values of the residual error for the
reconstruction of the wavefront based on a given slope matrix in
our simulation experiments demonstrate that the error of parallel
stitching is statistically less than that of serial stitching.

2. Principles

As mentioned in the introduction, a large-size component can
be measured using the stitching method. In this manner, we can
obtain a wider range of measurement area with good resolution
using a HS with a limited aperture. The disadvantages of the
stitching methods include error propagation, and we must move
the sensor or the sample repeatedly to cover the entire surface.

Therefore, the slope data on a large aperture consists of mul-
tiple slope matrices on different sub-regions. Due to the mis-
alignment, the piston, tilt, and even defocus, will be inevitably
introduced into the measurement data when we move the sensor
from one place to another. To eliminate the interference of mis-
alignment, the slope data on the overlapping area between two
adjacent subapertures are used to obtain the corresponding
stitching parameters by a linear least squares fitting routine. As a
result, these parameters, such as coefficient of tilt or defocus, are
obtained, and then this procedure is repeated to the end of the
stitching task until all these parameters are obtained. Next, these
parameters are treated to construct the stitched slope data on the
whole component. For simplicity of discussion, as shown in Fig. 1,
we assume that the two adjacent subapertures W; and W, have a
common area due to their overlapping area, and the measured
phase distributions over the two areas are denoted as &; and &,,
respectively. The connection of the two adjacent areas is con-
sidered first.

Let W, be the reference plane, and let the relationship between
the phase distributions ®; and &, in the common area fulfill the
following equation:

Dy =01+ P+ Tx+ Ty, 1
where P is the piston, and Ty and T, are the coefficients of the

tilt in the x and y directions, respectively. Considering the deri-
vation of x-tilt and y-tilt in Eq. (1), we have

AZ

Fig. 1. Schematic of subaperture stitching.

GZx - Glx = Tx
Goy = Gy =T, 2)

where Gix = do®i/ox and Gjy, = ody/dy are the x-tilt and y-tilt
measured slopes, respectively, over the area W, and Gy = 0d,/0x
and Gy, = 0d,/dy are the x-tilt and y-tilt measured slopes over the
area W, respectively. The parameter P disappears in Eq. (2) after
taking the derivative. In other words, the piston does not influence
the measured slope on subapertures; thus, we only need to find
the coefficient T, of x-tilt and coefficient T, of y-tilt. In general, a
minimum number of sampling points in the common area are
chosen to accomplish the calculation of the values of T, and T,
within an acceptable stitching error because the existence of
random noise during measurement will affect the calculation ac-
curacy of parameters.

Suppose there are n sampling points in their common area; in
this case, we can obtain the corresponding equations from Eq. (2)
as follows:

[ Gox(ay) = Gk, yp) | [1]

Gax(X2Y,) — Gix(X2, ¥5) | _ ] [Tx]y
| Gox(ny ¥p) = Gixn, ¥ | L1 (3a)
[ oy y) — Gy, ¥) | 17

Gy (X2Yy) = Gy, ¥p) | _ | 1 [T]

_GZy(Xnv yn) - G]y(xnv Yn )_ -]- (3b)

Accordingly, T, and T, are the averages of the differences in the
left-hand side of Egs. (3a) and (3b), Next, the adjusted results of
Gy and Gy, can be solved by using Eq. (2). Subsequently, the ad-
justed results of G,, and G, on the W, can be connected with the
results of Gy, and Gy, on the Wj successfully; as a result, we obtain
the stitched slope on the two adjacent areas.

Next, consider another case. Both tilt and defocus are in-
troduced in the measured slope data, and the relationship be-
tween the phase distributions &; and &, in their common area
fulfills the following equation:

@y — &1 =P+ Tx + T,y + D + y?2), (€

where D is the coefficient of defocus. Likewise, considering the
derivation of x-tilt and y-tilt in Eq. (4), we have

G2x - Glx = Tx + ZDXX

Gay — Giy = T, + 2Dyy. (5)

Similarly, suppose there are n sampling points in the common
area. From Eq. (5), we obtain

[ GovCay) — G yp) | [ 1, %]
Gax(X2Y,) — Gix(X2, ¥5) 1, x| I
ZDX ’
_GZX(Xnv yn) - Glx(xnv yn )_ _1, Xn_ (68)
[ Goy(x1.31) — Gy (x1, yp) (1, %]
Goy(2Y2) = Gy, y) | _ [ 1. 32 T
_GZy(Xnv yn) - Gly(xnv yn)_ _1, yn_ (Gb)

According to the least-squares method, we obtain the coeffi-
cients of T, T, and Dy, Dy in Eq. (6a) and (6b). Next, the adjusted
results of G, and Gy, can be obtained by using Eq. (5). As a result,
the stitched slope on the two adjacent areas is obtained.

3. Error analysis

For an actual measurement, the slope data measured by a
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