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a b s t r a c t

We study the entanglement evolution of a quantum optical vortex state propagating through coupled
lossless waveguides. We consider states generated by coupling two squeezed modes using a sequence of
beam splitters and also by subtracting photons from one of the output modes in spontaneous parametric
down conversion. We use the Wigner function to study the variation in the structure of the vortex state
with distance and quantify the entanglement after propagation using logarithmic negativity.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently a lot of work has been done to study states with non-
Gaussian quadrature space distribution, which finds numerous
applications in quantum information processing. Experiments
have been conducted to produce non-Gaussian states using tech-
niques like homodyne detection from a single mode squeezed
state of light [1,2]. Photon subtraction/addition from a single mode
squeezed state also gives rise to non-Gaussian states with asso-
ciated Wigner function showing negative regions [3]. These states
are important since they find a variety of useful applications in
quantum computation [4], entanglement distillation [5,6] and
loophole free tests of Bells inequality [7].

Quantum optical vortex states, considered by us in this article,
belong to such a class of non-Gaussian states with interesting
nonclassical features and a negative Wigner function. These states
were introduced in [8] and studied in some detail in [9–14]. These
are states with topological defects in the phase space and exhibit a
vortex structure in the quadrature space. Such states can be gen-
erated from two mode squeezed vacuum under a linear transfor-
mation belonging to the SU(2) group with certain restrictions [9].
These states have been realized in the laboratory using photon
subtraction [15]. It has been pointed out that photon subtraction/
addition leads to enhancement of entanglement [16]. In this article

we deal with vortex states arising from photon subtraction from
one of the modes of a two mode squeezed vacuum. The order of
the vortex is determined from the number of photons subtracted.
Interestingly, a vortex state of order m carries OAM given by m .

We also consider vortex states produced by mixing two
squeezed modes using a beam spliiter (BS) or a dual channel di-
rectional coupler (DCDC) [11]. It should be mentioned that a si-
milar state can be generated by using a Λ type three level atom
with counter rotating photons having circular polarization and
performing a conditional measurement [8]. Entanglement being a
fundamental resource in quantum information processing, it is
interesting to study states with enhanced entanglement from a
task oriented point of view. It has been shown that vortex states
carry more entanglement compared to the Gaussian states from
which they are generated and the entanglement carried can be
controlled by altering the squeezing parameter or the ratio of
mixing of the two input modes in a beam splitter [13].

In this article we study the propagation of entanglement of
quantum optical vortex states using coupled lossless waveguides.
The importance of coupled waveguides lie in their efficiency to
manipulate the flow of light [17–24]. They have been used ex-
tensively to implement quantum random walk [25] which finds
important applications in quantum computation and quantum
algorithms. Coupled waveguides have been successfully used to
implement a CNOT gate on a silica chip [26]. Given all these de-
velopments, it is important to study how such a system affects the
physical structure, nonclassical nature and entanglement present
in the light moving through it. We use the quadrature distribution
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and the Wigner function to study the difference in the physical
characteristics of the state after propagating through a modest
distance. The negativity of the Wigner function has already been
used to study nonclassicality of states [27] and violation of Bell's
inequality [28]. We use the negativity of the Wigner function as a
sufficient indicator of the non-Gaussian nature of the generalized
vortex state as well as its nonclassicality. Although the Glauber-
Sudarshan P distribution is better suited for differentiating be-
tween the so called “classical” and “nonclassical” states of light,
however, the negativity of the Wigner function is a sufficient cri-
terion for drawing a similar conclusion though not a necessary
criterion. An added advantage of the Wigner function is its use-
fulness in state tomography [29,30] which renders its study in
evolution problems even more important. However, time evolu-
tion of the Wigner function has been a difficult problem due to its
negative values [31]. Therefore, we use a numerical approach to
evolve the Wigner function as a function of the phase space co-
ordinates and use it to study the quantum correlations between
the two modes at a later time. Logarithmic negativity, first in-
troduced in [32] and later proven to be a proper entanglement
monotone [33] is a commonly used measure of entanglement. We
use this as a quantitative measure to study the behavior of en-
tanglement on propagation through the coupled waveguides.

The article is organized as follows. In the next section we
briefly introduce the model used for vortex evolution. In Section
2.1, we solve for the time evolution of the photon subtracted
vortex states. We present the equation and an interpretation and
explanation for the results in the same section. In Section 2.2 we
discuss the time evolution of the generalized vortex state gener-
ated by coupling two squeezed modes using a series of beam
splitters and explain the results obtained therein. We also con-
struct the Wigner functions for the respective states at a later time.
In Section 3, we present an explicit approach for studying the
entanglement and its variation with time for both the states using
logarithmic negativity.

We conclude the article in Section 4 with a brief review of the
important results.

2. Quantum optical vortex under time evolution

The model that we consider here consists of two single mode
coupled waveguides. The Hamiltonian for this system [34] can be
written as follows

( )ω= + + ( + ) ( )
† † † †H a a b b C a b b a 1

where a and b are the regular bosonic mode annihilation operators
for the two single mode waveguides. The first two terms corre-
spond to the free energy while the next two terms take into
account the evanescent coupling between the two waveguides
with C as the coupling strength. Typical values of the coupling
strength range between �1010 s�1 for waveguides like Lithium
Niobate to �1011 s�1 for Silica waveguides [35]. So we have used
C¼2�1010 s�1 in our article. We study the systems at the initial
time and after an interval of 10�6 s. Such an interval was chosen
for a typical distance of 300 m to check the variation in the
structure of the state after a fair distance of travel. Since we con-
sider lossless propagation over such short time intervals, the
Heisenberg equations of motion can be used to study the time
evolution of the bosonic field operators, a and b for the two modes
[35]. The time dependence of these operators are then given as

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) = −

( ) = − ( )

a t a Ct b Ct

b t b Ct a Ct

0 cos i 0 sin

0 cos i 0 sin 2

We consider two different input states. One of them is generated
by subtracting k photons from one of the modes of a two mode
squeezed vacuum which we study in Section 2.1. The other one
can be generated by using k beam splitters to couple two squeezed
mode vacuum states which we study in Section 2.2. The difference
between these two states is that the former is already entangled
before the process of photon subtraction while the latter gets
correlated after being coupled by the beam splitters.

2.1. Photon Subtraction

In this section we study the effect of propagation through
coupled waveguides on photon subtracted two mode squeezed
vacuum states also referred to as the two mode squeezed vortex
states. Subtraction of photons creates topological defects in the
phase space resulting in a vortex structure in the quadrature space
[12,14]. It would be worthwhile to mention that these states also
possess orbital angular momentum k if k photons are subtracted.
It would also be interesting to study how the vortex structure is
affected due to the propagation.

A two mode squeezed vacuum state can be written as,

( )ξ ξ ξ ξ| 〉 = − * | 〉 = ( )
ϕ† †a b ab rexp 0, 0 , e 3

i

where ξ is a complex parameter, r is the squeezing amplitude and
a and b are the regular bosonic mode operators. If k photons are
subtracted from one of the modes (see Appendix A for details), Eq.
(3) can be simplified to
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The state at time t can be found out by operating it with the time
evolution operator ( )t and solving the equation in the Schro-
dinger picture.

ξ ξ ξ| 〉 = ( )| 〉 = − | 〉
( )

⎡
⎣⎢

⎤
⎦⎥t
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exp

i
5k
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k k

where the Hamiltonian H is same as defined in Eq. (1). We present
time evolution of the state defined by Eq. (4) in Fig. 1. The rotation
produced is evident from the contour plot of the intensity. There is
also a visible distortion. The order remains constant which means
the orbital angular momentum is conserved.

The Wigner function associated with Eq. (4) is derived as,

( )( )α β
π

α α β( ˜ ˜) = − | ˜| − | ˜| + | ˜|
( )

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦W ,
4

1 4 exp 2
6

k
k2

2 2 2

where k is the Laguerre polynomial of order k, corresponding to
the number of photons subtracted. α̃ and β̃ are related to the
coherent state parameters α = −x ipx and β = −y ipy by a simple
transformation given by,
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To study the dynamics of the Wigner function analytically, one
needs to solve the equation of motion for the Wigner function
which is as follows

{ }( ) ( )∂ → →

∂
= − → →
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where { }{ }., . is the Moyal bracket. But this is a difficult problem
for most Hamiltonians and a perfect solution is known only for a
few cases. In this article we study the time evolution of the Wigner
function, Eq. (6), numerically. We follow the process outlined in
[31]. Given the Wigner function α β( ˜ ˜)W , at time =t t0, we wish to
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