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a b s t r a c t

We propose a three-dimensional (3D) phase transformation method by an impedance-matched di-
electric slab and apply it to generating hollow beams. We first employ transformation optics to establish
a method for the transformation between two arbitrary 3D wavefronts through a flat dielectric and
impedance-matched material. Then the method is used to convert a solid beam into a hollow beam with
desired wavefront. By tuning the transformation surface, different hollow beams can be produced. The
results are further validated by 3D finite-difference time-domain simulations.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The past decade has witnessed the flourishing of a new science
area, transformation optics (TO) [1]. TO provides a powerful recipe
to manipulate the direction, amplitude, phase, and polarization of
electromagnetic waves as desired by using artificial materials [2–
6]. It has given birth to unprecedented applications in which the
most well-known is the invisibility cloak [7]. In controlling phase
by TO, the conversion between two wavefronts can be realized,
while leading to transformation media with irregular shapes [8,9].
On this issue, we proposed a method to achieve any phase
transformation (PT) by a flat material [10] and used it to generate
Laguerre–Gaussian beams [11]. On the other hand, TO usually
chooses linear coordinate transformations (CTs) for simplicity,
which leads to impedance mismatch and thus to scattering on the
boundary, and the materials prescribed by TO are both electrically
and magnetically anisotropic, rendering practical implementation
often infeasible. For the two reasons, we suggested to realize PT
[12] using the techniques proposed in cloaking to eliminate im-
pedance mismatch by adopting a high-order CT [13–17] and to
simplify material parameters [7] to render the transformation
medium dielectric.

In recent years, hollow beams with zero central intensities,
such as Laguerre–Gaussian beams [18], Bessel–Gaussian beams

[19–21] and hollow Gaussian beams [22], have been extensively
studied [23–25]. Hollow beams manifest annular intensity dis-
tributions and have unique phase fronts. They can possess spin
and orbital angular momenta [18,26] and propagate without dif-
fraction [19]. Owing to their unique characteristics, hollow beams
have been used in manipulating particles [27,28] or atoms [29–31],
optical communications [32,33], imaging [34], laser processing
[35], biophysics [36], nonlinear optics [37] and so on. So far, a few
techniques have been put forward to produce hollow beams [23–
25]. Among them, the geometrical optical method using spiral
phase plates or axicons is very simple, but the beam quality relies
on precise alignment and is affected by the boundary reflection
[38–41]; computer-generated holograms have limited conversion
efficiencies [42–44]; spatial light modulators are able to generate
almost all the hollow beams flexibly but can not endure high
power [45–48]; and optical fibers require small incidence angle
and the intensity distribution is susceptible to the fiber bending
[21,49].

By now, the phase devices based on TO are mostly two-di-
mensional (2D) [3,50]. Such 2D devices are only effective to one
polarization, e.g. transverse-electric polarized incident waves. Re-
cently, three-dimensional (3D) TO lenses, e.g. Luneburg lens and
zone plate lens, were realized and demonstrated a control on the
phase for different polarizations in 3D space [51,52]. In this work,
we establish a 3D PT method to realize the conversion between
any two 3D wavefronts that results in a dielectric and impedance-
matched transformation material and use it to generate hollow
beams. First, we extend the previous method [12] to the 3D case to

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optcom

Optics Communications

http://dx.doi.org/10.1016/j.optcom.2016.05.011
0030-4018/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: wxshu@hnu.edu.cn (W. Shu).

Optics Communications 376 (2016) 99–106

www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2016.05.011
http://dx.doi.org/10.1016/j.optcom.2016.05.011
http://dx.doi.org/10.1016/j.optcom.2016.05.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2016.05.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2016.05.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2016.05.011&domain=pdf
mailto:wxshu@hnu.edu.cn
http://dx.doi.org/10.1016/j.optcom.2016.05.011


realize the conversion of an arbitrary 3D curved wavefront to
another one by a compact impedance-matched dielectric slab.
Then, we apply this method to convert a solid beam into a hollow
beam with desired wavefront and intensity distribution. Through
changing the transformation surface, different hollow beams, e.g.
single- or multi-ringed beams, hollow beams with or without
angular orbital momentum, and optical bottle beams or optical
cages [53–55], can be realized. Finally, we verify the theoretical
results using 3D finite-difference time-domain (FDTD) simulations
[56].

2. Method of 3D PT by impedance-matched dielectric slab

Our object is to realize the PT between two arbitrary 3D wa-
vefronts by an impedance-matched dielectric slab. Without loss of
generality, suppose that the incident beam propagates along z-
axis, the incident wavefront is characterized by = ( )z f x y,i , while
the output one = ( )z f x y,o , as shown in Fig. 1. If using previous PT
methods based on TO [8,9], the above task can be fulfilled by
transforming = ( )z f x y,i to = ( )z f x y,o directly [Fig. 1(a)]. Therein,
the optical path length is −f fo i. However, the resulting transfor-
mation material has an indefinite profile and then the aberration is
inevitable [58]. More seriously, it is dielectric-magnetic, which
makes itself difficult to be constructed, and the impedance is not
matched on the exit boundary, which results in unwanted scat-
tering. To overcome these shortcomings in this direct transfor-
mation method, we take an alternative way.

Firstly, we use an indirect transformation method to obtain a
flat figuration. We choose a reformed surface = − +z f f ci o to
transform into the plane surface z¼d [Fig. 1(b)]. The optical path
length is − + −f f d co i , which is equivalent to that of the direct
transformation method in addition to a constant that does not
influence the resulting phase. According to the principle of equal
optical path length [59], the two method can implement exactly
the same function. This method can be understood intuitively:
Imagine that in Fig. 1(a), the surface = ( )z f x y,o is stretched or
compressed to a plane z¼c so that the resultant device has a
planar exit surface. To preserve the optical path length, the input
surface = ( )z f x y,i has to undergo the same distortion and be re-
formed as = + ( − )z f c fi o . In a word, we can choose a profile of the
original wavefront minus the desired one to be transformed to a
plane in order to render the device planar [10,12].

As shown in Fig. 1(b), the virtual space from z¼0 to
= − +z f f ci o is stretched into the physical space from z¼0 to

z¼d. Let ( )x y z, , denote an arbitrary point in the virtual space
while ( ′ ′ ′)x y z, , in the physical space [57]. The corresponding CT
can be expressed as

′ = ′ = ′ = ( ) ( )x x y y z g x y z, , , , , 1

which satisfy two conditions

Δ′ = = ′ = = ( )z z z d z0 for 0, for , 2

on the incident and exit boundaries, respectively. Here d is the
width of the slab and

Δ( ) = + ( ) − ( ) ( )x y c f x y f x y, , , 3i o

denotes the profile of spatial separation between the two wave-
fronts. Following TO, the permittivity tensor ε and the perme-
ability tensor μ of the transformation material are respectively
related to the original ε0 and μ0 by ε ε= ( )J J J/detT

0 and
μ μ= ( )J J J/detT

0 , where J is the Jacobian matrix of transformation
between the transformed and the original coordinates [60]. In
order to simplify material parameters, we only consider the
transformation in the ′z direction that is set independent of x and y
(i.e., ∂ ′ ∂ =z x/ 0 and ∂ ′ ∂ =z y/ 0 [61,57]). Substitution of Eq. (1) leads
to a diagonal Jacobian matrix, = [ ∂ ∂ ]J g zdiag 1, 1, / . It then yields a
general result of the relative material parameters for the conver-
sion between two arbitrary 3D wavefronts:

ε μ( ) = (∂ ∂ ) (∂ ∂ ) ∂ ∂ ( )− −⎡⎣ ⎤⎦g z g z g zdiag / , / , / . 41 1

Obviously, the material is anisotropic and dielectric-magnetic,
which is difficult to fabricate in practice. In order to realize the
same function by a dielectric medium, it was proposed to reform
the material parameters by keeping the dispersion relation in-
variant [13]. Consider a TM wave incident on the slab with the
magnetic field along the ′x direction. We set μ =′ ′ 1x x and multiply
ε ′ ′y y and ε ′ ′z z with μ ′ ′x x in Eq. (4) to preserve the dispersion re-
lationship, thereby attaining

ε ε ε= = (∂ ∂ ) = ( )′ ′ ′ ′
−

′ ′g z1, / , 1. 5x x y y z z
2

It needs to point out that the impedance of the resultant ma-
terial is not matched between the exit boundary and the air. For
this reason, we impose additional requirements on the impedance.
That is, the ′y component μ ε| = | =′ ′= ′ ′ ′ ′ ′=Z / 1y z d x x z z z d which is sa-
tisfied automatically and the ′z component:

μ ε| = | = |∂ ∂ | = ( )′ ′= ′ ′ ′ ′ ′= ′=Z g z/ / 1. 6z z d x x y y z d z d

As well known, there are lots of functions satisfying the above
conditions [13–17]. For simplicity, we choose a quadratic function

( ) = + +g z pz qz b2 . Applying the conditions Eqs. (2) and (6) yields
Δ Δ= ( − )p d / 2, Δ Δ= ( − )q d2 / and b¼0. Thus

Fig. 1. Schematics of the 3D phase transformation between two arbitrarily curved
wavefronts by (a) the direct transformation method in the literature and (b) the
indirect method in the present work. In (a), the CT is performed by converting the
incident wavefront = ( )z f x y,i to the output one = ( )z f x y,o directly, i.e. →A B. The
virtual space (from z¼0 to =z fi) is transformed into the physical space (from z¼0
to =z fo) that has the same irregular shape as the exit wavefront. In (b) the CT is
carried out by flattening the transformation surface = ( ) − ( ) +z f x y f x y c, ,i o , a
shifted version of the incident wavefront = ( )z f x y,i minus the desired one

= ( )z f x y,o , to the exit plane z¼d, i.e. →C D. Meanwhile, the virtual space (from
z¼0 to = − +z f f ci o ) is stretched into the physical space (from z¼0 to z¼d), i.e.
the planar slab. The constant c does not influence the slab's function, except
changing the range of the material parameter. Here shown is an example where an
incident solid beam is converted into a hollow beam by the slab which reduces to a
cylinder due to the symmetry of the beams.
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