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a b s t r a c t

The concept of “the zero-distance phase front” of an isoplanar optical system is used to describe its
aberration. It is shown that Walther’s wave interpretation of eikonals allows treating “the zero-distance
phase front” as the wave aberration function of the optical system and calculating its transverse aber-
rations.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

An ideal optical system transforms a family of spherical wave
fronts diverging from an object point into a family of spherical
wave fronts converging to an image point. A real optical system
has aberrations and transforms the family of spherical wave fronts
into a family of changing wave fronts converging in a neighbor-
hood of the image point. In the image space of the real optical
system the shape of the wave fronts depends on the distance from
the image point. The wave aberrations of a real optical system are
traditionally defined as the difference between the real wave front
and the spherical wave front (the so-called “reference sphere”) in
the plane of the exit pupil of the optical system [1–5].

It is known that from the family of wave fronts can be extracted
one in the simplest shape which is a representative of the entire
family nevertheless [6]. This wave front is the so-called wave front
with a zero phase (or the zero-distance phase front) [6–14]. For
example, in optics of ultrafast laser pulses the zero distance phase
front of an optical system helps me to calculate the dispersion of a
stretcher [15].

The goal of this work is to reformulate the traditional theory of
the wave aberration of an optical system for the zero distance

phase front by using Walther’s wave treatment of eikonals
[5,16–21].

2. Geometrical description of light wave propagation

Monochromatic wave propagation can be described by a family
of phase fronts which is a locus of points of the wave with the same
phase of oscillation [5,14,22]. An alternative way to describe wave
propagation is given by orthogonal trajectories to the phase fronts,
the so-called light rays. The shape of phase fronts (and light rays) is
usually determined by the geometry of the source and the prop-
erties of the medium. In a homogeneous medium a point source S
generates a family of concentric spherical (circular) phase fronts
with a common center at S (or a homocentric beam of light rays
with a vertex at S) (Fig. 1a), and a plane source generates plane
phase fronts (or parallel rays) (Fig. 1b). All of these wave fronts
move with the same speed at a certain distance from one another.
This distance is the so-called wavelength of a monochromatic wave

λ λ= ( )n/ , 1o

where λo is the wavelength of the monochromatic wave in vacuum.
In an optically inhomogeneous medium with the refraction

index distribution n(x,y,z), the wavelength of a monochromatic
wave varies from point to point:
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λ λ( ) = ( ) ( )x y z n x y z, , / , , . 2o

Thus, in this case wave fronts are not spheres, and the light rays
propagate curvedly. But, according to the theorem of Malus and
Dupin [22], the normal rectilinear congruence between light rays
and wave fronts remains normal after passing through any optical
system. The tautochronism principle is carried out as well
[14,15,23,24]: in an optical system consisting of refracting and
reflecting elements the phase delay T between any two wave
fronts is identically the same for all rays (Fig. 2a). The tauto-
chronism principle may be restarted in term of the optical path
length which is defined by the line integral along any ray path γ
from point A to point B:

∫‖ ‖ ≡ ( ) ( )AB n x y z ds, , , 3A

B

where n(x,y,z) is the refraction index at each point along the ray
path γ, and = + +ds dx dy dz2 2 2 2. Thus, the tautochronism prin-
ciple is the same as the principle of equal optical paths [22]: in an
optical system consisting of refracting and reflecting elements the
optical path length between any two wave fronts is the same for
all rays. It implies that the wave fronts are “optically parallel” to
each other.

An ideal optical system transforms spherical wave fronts
emitted from an object point P into the spherical wave fronts
gathering at point P’ called the image point (Fig. 2b). As these
optical conjugate points P and P’ lie on the wave fronts, the ne-
cessary condition for the existence of a perfect optical system is a
remarkable corollary of the tautochronism principle [14,15,23,24]:
light takes identically the same time To to travel from the object
point P to the image point P’ along all rays traversing an ideal

optical system:

‖ ′‖ = = = ( )PP cT R const. 4o

3. ko-Fourier transformations reproduce Legendre
transformations

In wave optics the ko-Fourier transformations and the Legendre
transformations are widely used [20,21,25,26]. The direct
ko-Fourier transformation of the complex-valued function U(x,y) of
real variables (x,y) to the complex-valued function ˜ ( )U p q, of real
variables (p,q):
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and the inverse ko-Fourier transformation of the complex-valued
function ˜ ( )U p q, of real variables (p,q) to the complex-valued
function U(x,y) of real variables (x,y):
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are widely employed. The parameters p and q have the meaning of
dimensionless spatial frequencies. The composition of the direct
ko-Fourier transformation and the inverse ko-Fourier transforma-
tion (or the composition of the inverse ko-Fourier transformation
and the direct ko-Fourier transformation) is the identity transfor-
mation I:
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If the complex functions U(x,y) and ˜ ( )U p q, are factorized into
amplitude and phase factors:

Fig. 1. (а) Spherical wave front and (b) plane wave front in a homogeneous and
isotropic medium.

Fig. 2. Tautochronism principle: (а) in a general case, (b) in an ideal optical system.
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