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a b s t r a c t

We examine the influence of position-dependent effective mass (PDEM) on a few nonlinear optical (NLO)
properties of impurity doped quantum dots (QDs) in presence and absence of noise. The said properties
include total optical absorption coefficient (TOAC), nonlinear optical rectification (NOR), second har-
monic generation (SHG) and third harmonic generation (THG). The impurity potential is modeled by a
Gaussian function and the noise applied being Gaussian white noise. The profiles of above NLO properties
have been pursued as a function of incident photon energy for different values of PDEM. Using PDEM the
said profiles exhibit considerable departure from that of fixed effective mass (FEM). Presence of noise
almost invariably amplifies the NLO properties with a few exceptions. A change in the mode of appli-
cation of noise also sometimes affects the above profiles. The investigation furnishes us with a detailed
picture of the subtle interplay between noise and PDEM through which the said NLO properties of doped
QD systems can be tailored.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Low-dimensional semiconductor systems (LDSS) such as
quantum wells (QWLs), quantum wires (QWRs) and quantum dots
(QDs) are well known for their noticeably large nonlinear optical
(NLO) properties. A substantially large quantum confinement ef-
fect prevailing in LDSS becomes responsible for such enhanced
nonlinear effects and the confinement becomes much stronger in
comparison with the bulk materials. Such strong confinement in
LDSS lowers the energy separation between the subband levels
and amplifies the electric dipole matrix elements. The lowering
and the amplification together favor accomplishment of resonance
conditions. The enhanced NLO properties of LDSS give rise to
rigorous investigations in view of varieties of applications e.g.
probing the electronic structure of mesoscopic media, usage of
electronic and optoelectronic devices in the infra-red region of the
electromagnetic spectrum [1–4], deciphering the area of in-
tegrated optics and optical communications [5,6], and most sig-
nificantly, realization of fundamental physics.

An overwhelmingly large fraction of research on various NLO
properties of LDSS involve the second-order nonlinear processes,
e.g. nonlinear optical rectification (NOR) and second harmonic

generation (SHG). These two are the simplest and lowest-order
nonlinear processes having magnitudes larger than those of
higher-order ones, particularly, if the quantum system comprises
of noticeable asymmetry [7]. These NLO response properties of
LDSS can be correlated with the asymmetry of the confinement
potential. The even-order susceptibilities disappear in a symmetric
confinement potential and thus finite second-order susceptibilities
can only be expected if the symmetry of the confining potential is
destroyed [8,9]. Thus, in order to achieve desired finite second-
order susceptibilities, tunable asymmetry of the confinement po-
tential is of utmost importance [2]. The asymmetry can be realized
either by applying an external electric field to the system or by
exploiting sophisticated material growing technologies, such as
molecular beam epitaxy (MBE) and metal-organic chemical vapor
deposition (MOCVD).

One of the second-order nonlinear processes, i.e. NOR has been
subjected to considerable research recently that include the works
of Duque and his collaborators [2,3,5,6], Hassanabadi et al. [4],
Karabulut et al. [8], Yıldırım and Tomak [9], Karabulut and Şafak
[10], Guo and his co-workers [11–13], Baskoutas et al. [7,14,15],
Rezaei and his associates [16,17], and Xie and his group [18–22], to
mention a few.

SHG is another important second-order NLO property which is
extremely delicate to the symmetry of the systems. It is regularly
used to study the second-order properties of surface and inter-
faces (such as QWLs) as a non-destructive and non-contact probe.
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We, therefore, find a substantial number of important investiga-
tions on SHG coefficient of LDSS by Duque and his collaborators
[2,3,23], Hassanabadi et al. [4], Zhang and Xie [24], Liu et al. [25],
Karabulut et al. [26], Sauvage et al. [27], Sedrakian et al. [28] and
Guo and his group [1,29].

The third-order NLO properties assume importance in quantum
systems having inversion symmetry. In this case, while the sec-
ond-order susceptibility vanishes because of the inversion sym-
metry, the third-order one survives prominently and shows huge
enhancement compared with the bulk material [30]. The aug-
mented magnitude of the third-order nonlinearities in LDSS
compared with the bulk materials stems from the quantum con-
finement effects favoring large oscillator strength of the inter-
subband transitions and from the band structure engineering, of-
ten conforming to the triple resonance requirements [31,32]. NLO
substances with large third-order nonlinear susceptibilities χ3

have emerged as inalienable components for the manufacturing of
all-optical switching, modulating and computing devices [33].
Pioneering work on third harmonic generation (THG) suscept-
ibilities of InAs/GaAs self-assembled quantum dots was first done
by Sauvage et al. [34]. Later on, important works on THG sus-
ceptibility have been conducted by Şakiroğlu et al. [2], Zhang and
Xie [30], Wang [31], Shao et al. [32], Liu et al. [33], Yıldırım and
Tomak [35], Vaseghi et al. [36], Shao et al. [37], Zhai et al. [38],
Wang et al. [39], Niculescu et al. [40], Kirak and Altinok [41], Ra-
dovanović et al. [42], and Cristea et al. [43], to mention a few.

Introduction of impurity (dopant) into LDSS triggers rich in-
terplay between the dopant potential with the confinement po-
tential of LDSS which effectively alters the energy level distribu-
tion. Consequently, the electronic and optical properties of LDSS
also undergo huge change. Thus, a regulated inclusion of dopant
helps achieving desirable optical transitions. Such desirable optical
transition plays anchoring role in manufacturing optoelectronic
devices with tunable emission or transmission properties and ul-
tranarrow spectral linewidths. This has largely enlarged the do-
main of technological applications of LDSS. Moreover, the interplay
between the optical transition energy and the confinement
strength (or the quantum size) can effectively fine-tune the re-
sonance frequency. In what follows, optical properties of doped
LDSS have envisaged tremendous research activities [18,44–65].

Recently, we come across a considerable number of investiga-
tions which include position-dependent effective mass (PDEM) of
LDSS. PDEM leads to significant change in the binding energy of
the doped system and thus modifies the optical properties. Such
change in the optical properties has induced intense research ac-
tivities on LDSS with spatially varying effective mass in recent
years. In this context the works of Rajashabala and Nava-
neethakrishnan [66–68], Peter and Navaneethakrishnan [69],
Khordad [70,71], Qi et al. [72], Peter [73], Li et al. [74], and Naimi
et al. [75] deserve mention.

Of late, we have performed detailed studies on the role of noise
in tailoring some second and third-order nonlinear optical properties
of QD devices [76–78]. In the present study we explore the influ-
ence of position-dependent effective mass (PDEM) on the total op-
tical absorption coefficient (TOAC), nonlinear optical rectification
(NOR), second harmonic generation (SHG) coefficients, and third
harmonic generation (THG) coefficients of doped QD in presence of
Gaussian white noise. The system under study being a 2-d QD
(GaAs) consisting of single carrier electron under parabolic con-
finement in the –x y plane. The QD is doped with an impurity re-
presented by a Gaussian potential in the presence of a perpendi-
cular magnetic field which acts as an additional confinement. An
external static electric field has been applied to the system.
Gaussian white noise has been administered to the doped QD via
two different pathways, i.e. additive and multiplicative [76–78].
The profiles of above optical properties are pursued as a function

of frequency of incident radiation, simultaneously with fixed ef-
fective mass (FEM) and dopant position-dependent effective mass
(PDEM) which reveals some interesting results.

2. Method

The impurity doped QD Hamiltonian, subject to external static
electric field (F) applied along x and y-directions and spatially δ-
correlated Gaussian white noise (additive/multiplicative) can be
written as

= ′ + + | | ( + ) + ( )H H V e F x y V . 1imp noise0 0

Under effective mass approximation, ′H0 represents the impurity-
free 2-d quantum dot containing single carrier electron under
lateral parabolic confinement in the –x y plane and in presence of a
perpendicular magnetic field. ω( ) = ( + )⁎V x y m x y, 1
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confinement potential with ω0 as the harmonic confinement fre-
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mn represents the effective mass of the electron inside the QD
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viewed as the effective confinement frequency in the y-direction.
The dopant location-dependent effective mass ( )⁎m r0 where
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0
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where β is a constant chosen to be 0.01 a.u. The choice of above
form of PDEM indicates that the dopant is strongly bound to the
dot confinement center as →r 00 , i.e. for on-center dopants
whereas ( )⁎m r0 becomes highly significant as → ∞r0 , i.e. for far off-
center dopants.

Vimp is the impurity (dopant) potential represented by a

Gaussian function [76–78] viz. = γ− ( − ) +( − )⎡⎣ ⎤⎦V V eimp
x x y y

0
0 2

0
2
. ( )x y,0 0 is

the site of dopant incorporation, V0 is the strength of the dopant
potential, and γ�1 represents the spatial spread of impurity po-
tential. γ can be written as γ ε= k where ε is the static dielectric
constant of the medium and k is a constant.

The term Vnoise represents the noise contribution to the Ha-
miltonian H0. It consists of a spatially δ-correlated Gaussian white
noise [ ( )]f x y, which assumes a Gaussian distribution (generated
by Box–Muller algorithm) having strength ζ and is described by
the set of conditions [76–78]:

〈 ( )〉 = ( )f x y, 0, 5

the zero average condition, and

( )ζδ〈 ( ) ( ′ ′)〉 = ( ) − ( ′ ′) ( )f x y f x y x y x y, , 2 , , , 6

the spatial δ-correlation condition. The Gaussian white noise can
be applied to the system via two different modes (pathways), i.e.
additive and multiplicative [76–78]. In case of additive white noise
Vnoise becomes

λ= ( ) ( )V f x y, . 7noise 1

And with multiplicative noise we can write
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