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a b s t r a c t

Studies have already been made of accelerating Airy beams in the presence of deterministic in-
homogeneities, illustrating, in particular, that the inherent self-healing properties of such beams are
preserved. The cases of a range-dependent linear transverse potential and a converging GRIN structure
(harmonic oscillator) have been examined thoroughly. Examples will be given in this article of novel
accelerating Airy beams in the presence of five other types of potential functions. Three of the resulting
exact analytical solutions have a common salient characteristic property: they are constructed using the
free-space accelerating Airy beam solution as a seed.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The basic finite-energy accelerating (nonlinearly laterally
bending) Airy beam solution
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is governed by the paraxial equation
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in free space. Here, =x X X/ 0 and = ( )z Z kX/ 0
2 are, respectively, di-

mensionless transverse and longitudinal variables, defined in
terms of the original variables X and Z, the wavenumber k and a
scaling factor X0 with units of meters. The positive parameter α
entering into the Airy beam solution in Eq. (1) ensures the square
integrability (finite energy) of the input function ψ ( )x, 0f and,
hence, of ψ ( )x z,f for >z 0. The solution given in Eq. (1) was first
formulated analytically by Siviloglou and Christodoulides [1] and
subsequently demonstrated experimentally by Siviloglou, Broky,
Dogariu and Christodoulides [2]. Their work was motivated by the

infinite-energy (nonspreading) accelerating Airy solution to the
Schrödinger equation introduced by Berry and Balazs [3]; see also
[4] and [5] in the context of quantum mechanics. A full wave
theoretical analysis of the Airy beam has been undertaken by
Kaganovsky and Heyman [6]. An Airy beam is slowly diffracting; it
can retain its intensity over several diffraction lengths while
bending laterally along a parabolic path despite the fact that its
centroid is constant. Another feature, which has been demon-
strated both analytically and experimentally, is that an Airy beam
propagating in free space can perform ballistic dynamics akin to
those of projectiles moving under the action of gravity [7]. Ultra-
intense Airy beams have been investigated in the nonlinear regime
[8–10]. Accelerating spatiotemporal Airy wave packets can defy
effectively both dispersion and diffraction [11–13].

Both bending Airy beams and accelerating Airy wavepackets
are characterized by self-healing properties; they tend to reform in
spite of the severity of imposed perturbations [14–16]. The ro-
bustness of such beams in scattering and turbulent environments
has been studied analytically, numerically and experimentally in
the optical regime [17–19]. These exotic properties suggest various
physical applications, such as Airy beam-mediated particle clean-
ing and vacuum electron acceleration [20–22]. A recent review of
the theory, generation and applications of Airy beams has been
published by Hu et al. [23].

The specific purpose in this paper is to examine extended
bending Airy beam solutions to the paraxial equation in the pre-
sence of a variety of deterministic inhomogeneties. The free-space
paraxial equation is augmented by a “potential” function ( )V x z, ,
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(V(x, z) differs by a negative sign from the conventional quan-
tum mechanical potential function. Within the context of elec-
tromagnetic applications, the “potential function” should more
appropriately be replaced by a permittivity depending on the di-
mensionless transverse and longitudinal variables x and z, re-
spectively.) Accelerating Airy beams in the presence of special
potential functions have already been studied. The case of a range-
dependent linear transverse potential ( ) = ( )V x z F z x, was first ex-
amined by Berry and Balazs [3] in connection with the Schrödinger
equation, where z is replaced by t. It has also been examined
thoroughly by Efremidis et al. [24] in connection with the paraxial
equation. Depending on the choice of the function F(z), the lateral
bending of the beam can be different from parabolic. The presence
of a linear transverse optical potential has proven important for
the efficient manipulation of plasmonic Airy beams [25,26]. Fi-
nally, Chávez-Cerda et al. [27] have demonstrated, both theoreti-
cally and experimentally, that one can reduce the acceleration and
obtain a solitary wave with an Airy profile by modifying the
strength of the linear gradient index.

Another situation that has already been examined is that of the

“harmonic oscillator” potential ω( )=−V x z x, 1
2

2 2
. Bandres and Gu-

tiérrez-Vega [28] have used the Huygens approach together with the
ABCD matrix to study the transformation of a Gauss-Airy beam
through a medium characterized by a quadratic transverse profile. A
family of paraxial hypergeometric laser beams propagating in a
parabolic index fiber has been studied by Kotlyar et al. [29]. Zhang
et al. [30] have carried out a detailed investigation of the periodic
inversion and phase transition of finite-energy Airy beams in a
medium with a parabolic potential. Finally, although not quite per-
tinent for the present article, it should be mentioned that an exact
solution for Fresnel diffraction of a parabolic beam in a converging
GRIN structure has been obtained by Dela Valle, Gatti and Longhi [31]
using the Friedman–Robertson–Walker transformation.

Examples will be given below of novel accelerating Airy beams
in the presence of five potential functions that are distinct from
those mentioned earlier. A number of the resulting exact analytical

solutions have a common salient characteristic property: they are
constructed using the free-space Airy beam solution in Eq. (1) as a
seed.

2. Accelerating Airy beams for the inverted harmonic
oscillator

The inverted harmonic oscillator, with potential ω( )=V x z x, ,1
2

2 2

has attracted great attention not only because it is one of the ex-
actly solvable potentials in quantum mechanics but also for having
a wide range of applications in several branches of physics, e.g.,
high energy physics and solid state theory. In the framework of
optics, the negative parabolic index of refraction is a special case of
the “antiguide” potentials discussed by Chremmos and Giamalaki
recently [32].

Given a solution ψ ( )x z,f of the free-space paraxial equation in
Eq. (2), a solution for the inverted harmonic oscillator corre-

sponding to the potential ω( )=V x z x, 1
2

2 2
is given by a variant of the

Niederer transformation [33]; specifically,
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If ψ ( )x z,f is replaced by the basic finite-energy accelerating Airy
beam solution given in Eq. (1), one obtains the following accel-
erating Airy beam solution to the paraxial Eq. (3) with an inverted
parabolic index profile:
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Fig. 1. Comparison of the intensity of the free-space Airy beam (upper raw) to that of the inverted harmonic oscillator (lower raw) versus x for different values of the range z.
The parameter values are chosen as follows: ω= × =−a 2.5 10 and 1/16.2 Even for such a relatively small value of ω, the inverted oscillator Airy beam outperforms that for
free space. The free-space Airy beam loses its effectiveness as an almost nondiffracting beam at range =z 17, whereas the inverted oscillator maintains its effectiveness up to
the much larger range =z 50 despite the relatively small value of the parameter ω. Thus, the former diffracts more quickly.
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