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a b s t r a c t

The nonlinear interaction between an optical field and a mechanical resonator of an opto-mechanical
system plays an important role in quantum optics and quantum information. This work applies the
nonlinearity of opto-mechanical system to generate a nonclassical state for an initial state composed of
four-headed cat state of photonic mode and number state of mechanical mode. It is interesting to find
that the Wigner function of a mechanical mode is composed of finite Wigner functions of time-de-
pendent displaced number states, which is very useful in quantum information process. Furthermore,
nonclassical properties of the photonic and mechanical modes are investigated by using Wigner function.
An interesting result is that the negative volume of Wigner function for the photonic (or mechanical)
mode increases with parameter α (or k), which means that the larger initial value of photonic (or me-
chanical) mode will improve the nonclassicality of the photonic (or mechanical) mode. We also in-
vestigate the influence of different initial photonic states on the nonclassicality of mechanical and
photonic modes.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that nonclassical states play an important role
in quantum optics [1], quantum computation [1,2], quantum in-
formation [3,4], quantum metrology [5] and investigation of fun-
damental quantum theory [6–9]. Over the years, much attention
has been paid to generate nonclassical states and increase non-
classicality of quantum states theoretically and experimentally.
For example, a non-Gaussian operation (photon subtraction or
photon addition) on classical states may produce nonclassical
states [10–13]; a linear superpositions of coherent states may ex-
hibit strong nonclassical properties [4,14,15]; a movable mirror in
an opto-mechanical system can entangle two cavity fields and
generate multicomponent cat states [16–18]. As specific multi-
component cat states, the four-head cat states (4HCS), a super-
position of four different coherent state (4HCS) with different
phases prepared in the opto-mechanical system [16] or a cavity
quantum electrodynamics system [17], is “more nonclassical than
even/odd coherent states” [3].

Early applications of opto-mechanical systems are for high

precision displacement measurement [19] and gravitational wave
detection [20]. Due to the fast developed cooling technique, opto-
mechanical systems enter quantum region when the mechanical
resonator is cooled to near ground state. Opto-mechanical systems
exhibit quantum phenomena of macroscopic objects [21,22] and
generate new quantum states for both photonic mode and me-
chanical mode. As a nonlinear quantum dynamical system, opto-
mechanical systems are very suitable to generate nonclassical
states. Knight et al. [16] found that when both the initial state of
the photonic mode and the mechanical mode are coherent states,
an opto-mechanical system can produce multicomponent cat
states and near-number states for photonic mode and cat-like
state for mechanical mode.

It is well known that, for a nonlinear quantum dynamical sys-
tem, the final states of the system are critically dependent on the
initial states. The final state may show dramatically different
quantum properties for different initial states. Hence, it is inter-
esting to try to prepare interesting quantum states by injecting
different initial states into a common nonlinear quantum dyna-
mical system. In this work we assume that initial states of the
photonic mode and the mechanical mode of the opto-mechanical
system are 4HCS state and number state, respectively. We study
non-classical properties of photonic/mechanical mode by using
the density matrix method. Furthermore, the influence of system
parameters on the probability distribution and the nonclassicality
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of photonic/mechanical mode is also investigated.
This paper is structured as follows. In Section 2, we introduce

the dynamics of the opto-mechanical system and obtain the sys-
tem state at time t based on the time evolution operator. In Section
3, we investigate nonclassicalities of photonic mode and me-
chanical mode via the Wigner function method. In Section 4, we
study the fidelity between final system state at time t and initial
system state. Section 5 is the summary of our main results.

2. Dynamics of the undamped system

Here we consider an opto-mechanical system composed of an
optical resonator (the optical mode) with a movable mirror (the
mechanical mode). The Hamiltonian of the system is given by
[16,23]

ω= ℏ − ℏ ( + ) ( )† † †H b b g a a b b , 1m 0

where ( )†b b are creation (annihilation) operators for the me-
chanical mode with angular frequency ωm, interacting with the
optical mode, denoted by creation (annihilation) operators ( )†a a ,
with frequency ω0. The coupling coefficient g0 is

ω
ω

= ℏ
( )

g
L M2

,
2m

0
0

where L is the cavity length, and M is the effective mass of the
mirror. Then we obtain the time evolution operator for the Ha-
miltonian of system (details see the Appendix):

η η( ) = { ( ) ( − )} { ( − )}

{ − } ( )

† † † ⁎

†

U t ig a a t t ga a b b

itb b

exp sin exp

exp , 3

2 2

with η ω= − =−e g g1 , /it
m0 is the scaled coupling strength, and t

represents a scaled time which is equal to ωm multiplying the
actual time ′t . Considering experimental feasibility [24], the values
of some related parameters can be adopted as:
ω π ω π∼ ∼ ∼ ∼ μM L/2 10 Hz, /2 10 Hz, 10 pg, 1 m.m0
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As seen in Eq. (3), there are generalized Kerr term [16,25] and
generalized displacement operator in U(t). This implies that the
opto-mechanical system may exhibit some properties of non-lin-
earity and displacement, which can be seen from the Wigner
function of the opto-mechanical system in Section 3.

We assume that the initial state of the system is

( )Ψ α( ) = ⊗ ( )C k0 , 4p m4

where k is the initial number state of the mechanical mode, and
α( )C4 [3] is the initial state of the photonic mode, which is called

four-headed cat state (4HCS) and is the superposition of coherent
states with four different phases, and it is defined as
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where

( )α= + +α α− −⎡⎣ ⎤⎦M e e4 1 2 cos .4
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The state of the system at time t is given by
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which is obtained by using the following displacement operator
and relevant relations [26]:

α α α( ) = { − } ( )† ⁎D b bexp . 7b

From Eq. (6), we find that when g satisfies the relation =g N16 2

(positive integer), the minimum evolution period of the opto-
mechanical system is π2 . This means that the photonic mode will
return to 4HCS and the mechanical mode will return to the
number state after scaled time π2 .

Naturally we can obtain the density matrix of system
ρ Ψ Ψ= ( ) ( )t t , and obtain the density matrix of photonic/me-
chanical mode through tracing on the mechanical/photonic mode,
which are given by
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where we have used the generating function of Laguerre poly-
nomial [27] to obtain Eq. (8),
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The correlation between the photonic mode and the mechan-
ical mode can be expressed by their linear entropy [28]:

ρ= − [ ] ( )S 1 Tr . 112

Hence we can obtain S of the opto-mechanical system and ( )S Sp m

of the photonic (mechanical) mode:

= ( )S 0, 12
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The evolution of the linear entropy Sp (Sm) reflects the evolu-
tion character of the correlation degree between the photonic
mode and the mechanical mode. We can see from Eq. (13) and
Fig. 1(a) that linear entropy of the opto-mechanical system S is
always 0, while linear entropies of photonic mode Sp and me-
chanical state Sm are the same and change periodically with period

π2 during time evolution. That means the opto-mechanical system
is in pure state for all time, but the subsystems (photonic mode
and mechanical mode) evolve between pure state ( =( )S 0p m ) and
mixed state ( ≠( )S 0p m ). Furthermore, the larger value of linear
entropy Sp (Sm) corresponds to the stronger correlation and the
deeper entanglement degree. From Fig. 1(a) we find that the
photonic mode is entangled with the mechanical mode in the
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