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a b s t r a c t

Optical fields propagating through quadratic-phase systems (QPSs) can be modeled as magnified frac-
tional Fourier transforms (FRTs) of the input field, provided we observe them on suitably defined
spherical reference surfaces. Non-redundant representation of the fields with the minimum number of
samples becomes possible by appropriate choice of sample points on these surfaces. Longitudinally, these
surfaces should not be spaced equally with the distance of propagation, but with respect to the FRT order.
The non-uniform sampling grid that emerges mirrors the fundamental structure of propagation through
QPSs. By providing a means to effectively handle the sampling of chirp functions, it allows for accurate
and efficient computation of optical fields propagating in QPSs.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quadratic-phase systems (QPSs), also known as first-order
optical systems or ABCD systems, are a very general family of
optical systems encompassing arbitrary concatenations of various
components such as thin lenses and sections of free space in the
Fresnel approximation, as well as quadratic graded-index media
[1–4]. Mathematically, QPSs are referred to as linear canonical
transforms [5,7,6,8–11]. In this paper, we derive the optimal
sampling grid for this general family. This non-redundant grid of
sample points mirrors the physical structure of QPSs and enables
their accurate and fast simulation. The fractional Fourier transform
(FRT) plays a fundamental role in the analysis of QPSs. We also
analyze the evolution of spatial information along the longitudinal
direction and show that the spherical reference surfaces should be
equally spaced with respect to the fractional Fourier transform
order. Our results are relevant to work on both sampling and fast
computation of light fields propagating through quadratic-phase
systems [12–26].

2. Decomposition of propagation in quadratic-phase systems

We will use ^ ( )f x and σ^ ( )F x to represent an optical signal in the

space domain and the frequency domain, respectively. Although
we work with functions of a single variable for sake of simpler
analysis, our results can be generalized to two dimensions. It will
be useful to introduce dimensionless variables u¼x/s and μ σ= s x

for space and frequency, where s is a scaling parameter with units

of length. We now define ^ ( ) ≡ ( ) ( )f x s f u1/ and σ μ^ ( ) ≡ ( )F s Fx .
The functions f(u) and μ( )F are the space- and frequency-domain
functions that take dimensionless arguments. More information
on this dimensional normalization process may be found in [1].

The FRT can be viewed as the “fractional operator power” of the
common Fourier transform (FT). One way of defining the ath order
FRT of a function f(u), which we denote by fa(u), is

∫ ( )π π π π( ) = [ ( ( ) − ′ ( ) + ′ ( ))] ( ′) ′
−∞

∞

1f u A i u a uu a u a f u duexp cot /2 2 csc /2 cot /2a a
2 2

See [1] for subtleties in the definition of fractional operator powers
as well as alternative ways of defining the FRT. Here

π= − ( )A i a1 cot /2a . When a¼1, we obtain the common FT, so
that the FRT can be seen as a generalization of the common FT.
Viewed in the space–frequency plane (phase space), the act of
taking the FRT of a signal results in a α π= a /2 rotation of its
Wigner distribution. This can be expressed as a relation between
the Wigner distribution of f(u) and the Wigner distribution of fa(u)
as follows [27]:

μ α μ α α μ α( ) = ( − + ) ( )W u W u u, cos sin , sin cos . 2f fa

Quadratic-phase systems (QPSs) are unitary. The input ^ ( )f x
leads to an output ^ ( )g x given by
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∫β^ ( ) = ^ ( ′) ′ ( )
π π α β γ−

−∞

∞
( − ′+ ′ )g x e e f x dx . 3

i i x xx x/4 22 2

They are often characterized by the ABCD parameters which satisfy
− =AD BC 1 and are defined as
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Consider a quasi-monochromatic optical signal with wavelength λ.
Fresnel diffraction and passage through a thin lens are special
kinds of QPSs. For Fresnel propagation over a distance d, we have

= =A D 1, C¼0, and λ=B d. For a thin lens with focal length f we
have = =A D 1, B¼0, and λ= −C f1/ .

Quadratic-phase systems have many decompositions. A de-
composition is the breaking down of the system into consecutive
simpler parts. One of the possible decompositions involves three
stages. The first is a FRT operation, the second is a magnification
operation, and the final stage is a chirp multiplication operation
[28–32]:
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Here a, M, and R are defined through
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The ambiguity in inverting the tangent in Eq. (6) should be re-
solved by choosing a in < <a0 2 for >B 0 and in < <a2 4 for

<B 0. We will make a number of observations on these equations.
First, we note that the unit-magnitude π λ π−e ei d ia2 / /4 terms are
constant and unimportant for our purposes. Furthermore, the
chirp multiplication term can be eliminated, if we decide to ob-
serve the output not on a planar surface, but on a spherical re-
ference surface with radius as given by the value of R above. In this
case, we observe a magnified version of the FRT of the input, with
the magnification given by the value of M above. A final note is

that, Eq. (5) is valid no matter what we choose s to be. This de-
composition will constitute the basis for our derivation of the
optimal sampling grid.

3. Transverse sampling spacing

A discussion of sampling often begins with assumptions on the
extent of the signals in both space and frequency, the latter often
called the bandwidth. An alternative approach is to specify the
extent of the signals in the space–frequency plane. Our beginning
assumption will be to specify the space–frequency region to which
the signal is confined. Here, “confined” means that a sufficiently
large percentage of the total energy is contained in that region.

We will take the z¼0 plane as our input plane. We assume that
the space–frequency region of confinement of the input signal at
this plane is an ellipse with diameters denoted by Δx and σΔ x

(Fig. 1(a)). Note that this implies that the space extent of the signal
is Δx and that the frequency extent of the signal is σΔ x. How many
samples are needed to represent the signal? The sampling theo-
rem of Nyquist–Shannon requires a sampling interval of σΔ1/ x.
Over a spatial extent of Δx this means σ σ= Δ ( Δ ) = Δ ΔN x x/ 1/ x x

samples. This is known as the space–bandwidth product. The same
derivation can be repeated in dimensionless coordinates. Now the
ellipse diameters (and thus also the space and frequency extents)
are Δx s/ and σΔs x, which lead to the same value of N. The space–
bandwidth product is invariant under scalings and does not de-
pend on s.

We now consider a QPS between the z¼0 and z¼d planes
characterized by the parameters ABCD. For example, in a system
made up of lenses separated by sections of free space, these ABCD
parameters will depend on the focal lengths and locations of the
lenses. We will first determine the spatial extent of the output

signal ^ ( )g x observed at z¼d, given an input signal ^ ( )f x at z¼0. It is

known that the Wigner distributions of ^ ( )f x and ^ ( )g x have the
following relationship [1,33–36]:

σ σ σ^ ( ) = ^ ( − − + ) ( )W x W Dx B Cx A, , . 9g x f x x

Based on our assumption that the initial space–frequency dis-
tribution of the signal is well-confined to an elliptical region with
diameters Δx and σΔ x, and using Eq. (9), it is possible to show that
the output space–frequency distribution will have a spatial extent

σΔ ″ = Δ + Δ ( )x x D B , 10x
2 2 2 2

Δσx Δσx Δσx

Δx Δx Δx

(a) (b) (c)

x x x

σx σx σx

Fig. 1. The space–frequency ellipses show the approximate region of confinement of the (a) input signal, (b) output signal on the planar reference surface, and (c) output
signal on the spherical reference surface ( σ= Δ Δs x/ x , which is the optimal value).
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