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a b s t r a c t

We investigate the time evolution of entanglement of various entangled states of two-qubit atomic
system in vacuum environment using exact analysis. Compared to our earlier work under Markov ap-
proximation [M. Ikram, F.-L. Li, M.S. Zubairy, Phys. Rev. A 75 (2007) 062336] we show that disen-
tanglement rate is slower and sudden death times are higher than the earlier study in each set of en-
tangled state.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The open system dynamics of composite systems, being in-
itially in entangled states, is well explored in recent years. It is
well known that the individual quantum systems obey half-life
and decay exponentially. However, for a composite system–en-
vironment scenario, the coupling makes correlated dynamics
quite complex. Yu and Eberly [1] were the first to study the be-
havior of a composite two-qubit mixed atomic system in the
dissipative environment. They investigated that although local
systems may decay asymptotically but, in contrast, the composite
entangled systems may decay in finite times depending upon the
mixing of doubly excited component. Their work was extended to
a class of initially mixed and pure states for non-interacting [2–5]
and interacting [6–8] qubits. All of this work is done exploiting
the Markov approximation for weak system–environment cou-
pling. This assumption ensures short memory in the sense that
correlation time is very short and there is no feedback from the
environment to the system. However, when the system–en-
vironment coupling is not weak, Markov approximation is no
more valid [9]. In such a scenario, systems do have feedback from
their environment and retain memory of interaction as implied
by Jaynes–Cumming model. In such cases, memory effects are
important and interesting from many points of views. During the

time span when the memory effects are not negligible, the flow of
energy and information from the system to the environment can
be momentarily reversed. The reversal of these processes causes
recoherence and restoration of previously lost superpositions
[10]. These systems are treated as non-Markovian [11]. Non-
Markovian systems appear in many branches of physics, such as
quantum optics [12,13], solid sate physics [14], quantum chem-
istry [15] and quantum information processing [16]. Memory
effects are usually characterized by a structured spectral density
implying that the quantum system interacts more strongly with
some modes of the reservoir than with others. Leaky optical
cavities and photonic band-gap materials, for example, have such
spectral densities [10,13].

The entanglement dynamics in strong coupling regime has
been recently investigated under different theoretical models [17–
20]. Particularly, the role of spectral width of system–environment
coupling and mixing of the initial state is investigated for two-
qubit systems [22]. In this paper, we investigate the entanglement
dynamics of a two qubit system, with qubits as two-level atoms
trapped in two leaky cavities, thus having structured vacuum re-
servoir inside the cavities. Due to structured reservoir–system
interaction, Markov approximation cannot be applied here.
Knowing that doubly excited component in the entangled state is
the main source of disentanglement, we consider a set of atomic
system having mixing of doubly excited component and study the
entanglement evolution of these states in non-Markovian system–

reservoir interaction. On contrary to the previous study [2], non-
Markovian effect or the exact treatment not only suggests the
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postponement of the death of the entanglement but it exhibit an
evident enhancement in the entanglement. The Wootters con-
currence formula [21] is used as a quantitative measure of two-
qubit entanglement.

The paper is organized as follows. In Section 2, we present the
theoretical model employed to investigate the non-Markovian
effects on the two-qubit entanglement dynamics. Further analy-
tical and numerical results are presented for different cases of
initial mixed states. Section 3 finally concludes the paper with a
brief discussion.

2. Model

We consider the similar model as in [2], i.e., two two-level
atoms representing a bipartite system trapped in two separate
cavities containing structured vacuum acquired through the in-
teraction of cavity fields with the outside vacuum as shown in
Fig. 1. However, the correlation between the atoms depends only
on the initial quantum entanglement between them. We also
consider that the cavities are far apart with no direct cross-mutual
interaction between the atoms or the cavity fields. The total Ha-
miltonian can be written as

= + ( )H H H , 1o I

where Ho and HI are the free and interaction parts, respectively, of
the Hamiltonian, and are given by
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Here, in these equations, ωo is the transition frequency of the two-
level atom, σ σ( )+ −

i i is the raising (lowering) operator for the atom i
and index k labels the different field modes of the reservoir with
frequencies ωk with ( )†b bk k being the field annihilation(creation)
operator. Using the rotating-wave approximation, the interaction
Hamiltonian between an atom and N-mode reservoir takes the
form [23]
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where gk
i is the coupling constant between the atom i and the

vacuum reservoir. We focus on the case for which the structured
reservoir is the electromagnetic field inside the lossy cavity. It
means that the discrete cavity modes can be effectively replaced
with the spectral density function. We consider a case where the
atom is interacting resonantly with the cavity field reservoir
having Lorentzian spectral density that characterizes the coupling
strength of the reservoir to the qubit as follows:
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This corresponds to a cavity supporting a single mode of frequency
ωc which can be leaked out through the non-ideal cavity walls
with a probability proportional to λ2, where λ is the spectral width
of the field distribution inside the lossy cavity. It is connected to
the reservoir correlation time τB by the relation τ λ= −

B
1 and the

time scale τR on which the state of the system changes is given by
τ γ= −

R 0
1. Here the parameter γ0 is proportional to the strength of

the atom–cavity coupling. Typically, in weak coupling regime
λ γ( > )2 0 , the qubit–reservoir system is Markovian and in strong
coupling regime λ γ( < )2 0 , non-Markovian dynamics occurs ac-
companied by a reversible decay.

In this paper, we are interested in two-qubit entanglement
dynamics in strong coupling regime. To incorporate the para-
meters that control the atomic dynamics under strong coupling,
we need to study the decay of a single two-level atom. We,
therefore, consider a single two-level atom initially in excited state
a trapped in a cavity containing vacuum modes, then time de-
pendent wave function of the system and the environment can be
written as

( ) ( ) ( )∑ψ = +
( )

t A t a B t b, 0 , 1 ,
6k

k k

where ( )A t and ( )B tk are the probability amplitudes of atom in
excited state a with vacuum in cavity and atom in ground state b
with cavity in single photon in kth mode 1k , respectively. From
Schrodinger equation we get the integro-differential equation
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where ( − )́f t t is a correlation function defined in terms of con-
tinuous limits of the environment frequency as
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Considering the frequency distribution inside the cavity as defined
in Eq. (5) for λ > 0 and − ́t t real, we get

( )γ λ( − )́ = ( )λ− − ́f t t e , 9t t1
2 0

where it is assumed that atomic transition frequency ω0 is re-
sonant with the cavity's central frequency mode ωc. Now, we can
solve the integro-differential equation (Eq. (7)) using initial con-
dition ( ) =A 0 1 i.e., atom is initially in excited state and vacuum in
the cavity, as
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where λ γ λ= −d 22
0 and is defined in the strong coupling regime

γ λ> /20 or τ τ< 2R B. The single atom dynamics exhibits an exponential

decay by the oscillatory function ( ) = ( ) + ( )λp t dt dtcosh /2 sinh /2
d

.
Thus we can easily calculate the modified decay rate using
Γ ( ) = − [ ̇ ( ) ( )]t A t A t2 Re / , as

Fig. 1. Two two-level atoms, initially prepared in an entangled state, trapped in two cavities having structured vacuum reservoir surrounded by vacuum environment.
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