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a b s t r a c t

We propose three effective protocols to generate four-qubit entangled decoherence-free states assisted
by the cavity-QED system. These schemes are based on optical selection rules realized with a single
electron charged self-assembled GaAs/InAs quantum dot in a micropillar resonator. Compared with
previous photonic protocols, the first scheme is to replace the entangled-state resources with much
simpler single-photon resources and has a deterministic success probability. Moreover, the cavity-QED
system may be used to generate four-spin entangled decoherence-free states and hybrid four-qubit of
spin-photon entangled decoherence-free states. These states may be applied up to different require-
ments because of different superiorities of photons and spins. All schemes may be implemented with
current physical technologies.

Crown Copyright & 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

Quantum entanglement occurs when different particles are
generated or interact in ways such that each particle cannot be
described independently. Bipartite or multipartite entanglements
as essential ingredients for testing local hidden variable have be-
come most important resources for quantum teleportation [1,2],
quantum computation [3–5], quantum key distribution [6–8],
quantum dense coding [9–11], etc. Most of these protocols require
maximal entanglements or noiseless quantum channels [1–11].
However, in practice, they are easily degraded because of the
coupling between the quantum system and the environment or
equipments [12], which may greatly reduce the application fide-
lity. Different ways have been explored to deal with these quan-
tum decoherences. One way is to concentrate the decoherenced
quantum entanglements. Entanglement concentration is used to
get the maximal entanglement from partially entangled pure
states. Bennett et al. [13] introduced the first entanglement con-
centration protocol (ECP) using the Schmidt projection method
and collective measurements for two-photon systems. After that,
many interesting ECPs have been proposed for photon systems
[14–23]. The other typical scheme uses the quantum error-

correction and dynamical decoupling techniques. Another useful
way is to encode information into the symmetry state in the de-
coherence-free subspace to avoid the system–environment inter-
action. Thus the decoherence-free subspace is inherently immune
to quantum decoherence and robust to perturbing error processes.
Therefore, the decoherence-free states are very useful for long-
distance quantum communication and quantum computation and
applied in quantum error correction codes [12].

The N-qubit decoherence-free states were originally proposed
by Kempe et al. [24], and are invariant under any identical unitary
transformation on each of the qubits. One decoherence-free
singlet state is special EPR state
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Another nontrivial example is the four-qubit entangled deco-
herence-free state
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. This four-qubit state is sufficient to fully

protect an arbitrary logical qubit against collective decoherence in
contrast to the two-qubit state. With its interesting applications,
Bourennane et al. [25] have generated a four-photon polarization-
entangled decoherence-free states via a spontaneous parametric
down-conversion source. They coherently overlapped two four-
photon sources Ψ| 〉1 and Ψ| 〉2 . Recently, Zou et al. [26] and Gong et al.
[27] proposed schemes to generate four-photon polarization-en-
tangled decoherence-free states based on linear optical elements
and post-selection strategy. However, those schemes mentioned in
Refs. [25-27] work in the destructive way because the generated
four-photon polarization-entangled decoherence-free states can-
not be used for further quantum information processing and
quantum computation when a four-photon coincidence measure-
ment was made on the photonic states. Wang et al. [28] propose a
probabilistic linear-optics-based scheme for local conversion of
four Einstein–Podolsky–Rosen photon pairs into four-photon po-
larization-entangled decoherence-free states.

In this paper, we propose deterministic schemes to generate the
four-photon entangled decoherence-free states, four-spin entangled
decoherence-free states, hybrid four-qubit entangled decoherence-
free states assisted by the cavity-QED system. Hybrid systems (pho-
ton-spin) [29,30] have been explored to effectively enable strong
nonlinear interactions between single photons [31] in the weak-
coupling regime. The optical selection rules realized with a single
electron charged self-assembled GaAs/InAs quantum dot in a mi-
cropillar resonator [32,33] may be applied to construct qubit gates on
photon systems [31,34–38]. We first present a theoretical prepara-
tion scheme of four-qubit entangled decoherence-free states with
CNOT gates and one-qubit rotations. And then, we generate four-
photon entangled decoherence-free states by constructing the CNOT
gate on a two-photon systemwith the help of the cavity-QED system.
Moreover, by constructing the CNOT gate on a two-spin system, we
can generate four-spin entangled decoherence-free states with the
help of the cavity-QED system. Furthermore, with the hybrid CNOT
gate on a photon-spin or spin-photon system, hybrid four-qubit en-
tangled decoherence-free states may be generated. These schemes
may be experimentally realized with present technology.

2. Generations of four-qubit entangled decoherence-free states

In order to generate four-qubit entangled decoherence-free
states deterministically, we consider its theoretical decomposition
circuits using the elementary gates of the CNOT gate and single-
qubit rotations. Notice that Φ| 〉 may be rewritten as Φ| 〉=
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and ψ| 〉 = | 〉−10 . Using the two-qubit logic gate · ·T T T11 12 13, the initial
state | 〉0011 is changed into
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And then using two CNOT gates on qubits (1,3) and qubits (2,4),
we can get
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which may be changed into Φ| 〉 using two two-qubit logic gates
= · ·T CNOT T CNOT1 12 14 and = · ·−T CNOT T CNOT1 13 14

1 on the first two-
qubit (1,2) and the last two-qubit (3,4) respectively. Here,
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Now, using the CNOT gate and qubit rotations [39,40],
each controlled-U can be realized with ( ⊗ )· ·I A CNOT12
( ⊗ )· ·( ⊗ )I B CNOT I C12 2 , where α θ β= ( ) ( ) ( )U R R Rz y z , α θ= ( ) ( )A R R /2z y ,

θ α β= ( − ) ( − ( + ) )B R R/2 /2y z , and β α= (( − ) )C R /2z . Thus we can
get the following decompositions:
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where X denote the Pauli flip,
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with θ θ α β= ( ) = ( )arctan 1/ 2 , 2arctan /1 2 , and CNOT1 denotes the
controlled NOT gate with the first qubit is the controlling qubit
while CNOT2 denotes the controlled NOT gate with the
second qubit as the controlling qubit. θ θ( ) = ( )| 〉R cos /2 0y

θ θ θ〈 | − ( )| 〉〈 | + ( )| 〉〈 | + ( )| 〉〈 |0 sin /2 0 1 sin /2 1 0 cos /2 1 1 and φ( )=Rz

φ φ( )| 〉〈 | + ( − )| 〉〈 |i iexp /2 0 0 exp /2 1 1 denote the qubit rotations
along the y-axis or z-axis in Pauli sphere respectively. X denotes
the Pauli flip.

2.1. A singely charged quantum dot in an one-side optical
microcavity

The cavity-QED system used in our proposal is constructed by a
singly charged In(Ga)As quantum dot located in the center of a
one-side optical cavity [41–43], as shown in Fig. 1. The single
electron states have = ±J 1/2z spin (| ↑ 〉 | ↓ 〉, ) and the holes have

= ±J 3/2z ( |⇑〉 |⇓〉, ). The two electrons form a singlet state and
therefore have total spin zero, which prevents electron spin in-
teractions with the hole spin [41]. Photon polarization is com-
monly defined with respect to the direction of propagation, i.e. z-
axis, where the absolute rotation direction of its electro-magnetic
fields does not change. Label the optical states by their circular
polarization ( | 〉L and | 〉R for left and right circular polarization re-
spectively). A negatively charged exciton | ↑ ↓ ⇑〉 or | ↓ ↑ ⇓〉 may be
created by resonantly absorbing | 〉L or | 〉R , respectively.

The input–output relation of this one-side cavity system can be
calculated from the Heisenberg equation [41] of motions for the
cavity field operator and dipole operator
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