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a b s t r a c t

We study the threshold for the formation of atom-photon bound (APB) states from a two-level atom
embedded in a coherent photonic band-gap (PBG) reservoir. It is shown that the embedded position of
the atom plays an important role in the threshold. By varying the atomic embedded position, a part of
formation range of APB states can be moved from inside to outside the band gap. The direct link between
the steady-state entanglement and APB states is also investigated. We show that the values of en-
tanglement between reservoir modes reflect the amount of bounded energy caused by APB states. The
feasible experimental systems for verifying the above phenomena are discussed. Our results provide a
clear clue on how to form and control APB states in PBG materials.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Photonic band-gap materials are structures where the photonic
mode density is zero [1]. For an atomwith transitions inside a PBG,
a photon emitted by the atom will only penetrate a finite length
scale, forming the APB state [2–4]. This Non-Markovian atom-field
interaction leads to many remarkable phenomena, including
suppression of spontaneous emission [5–8], fractionalized single-
atom inversion [9,10], photon hopping conduction [11], and po-
pulation trapping [12]. Additionally, the formation of APB states
has broad applications in quantum information processing. Theo-
retical studies [13–15] have shown that the existence of APB states
can lead to quantum entanglement preservation between atoms as
well as permanent effective coupling between reservoir modes.
Most notably, the photonic component of the APB state can be
thought of as an atom-induced cavity mode, which can be used to
realize tunable long-range interaction between atoms [16]. Ex-
perimentally, the Non-Markovian atom-field interaction in PBG
reservoirs has been directly observed [17–20].

In view of these applications, it is necessary to further study the
dynamical control of APB states in PBG reservoirs. Studies have
shown that APB states can be controlled by a classical driving field
[21,22]. An and her co-workers [23–25] have studied the condition
for formation of APB states and its direct consequence on the
population trapping of atoms embedded in a single-band PBG

reservoir. The criteria for population trapping in thermalization
processes have been analyzed in Ref. [26]. It leads us to pose the
next questions: (1) How to determine the threshold of APB states
formation reflected by the population trapping? (2) What is the
effect of the relative position of the atom embedded in photonic
crystals on the formation of APB states?

In this paper we focus on these questions and elucidate the
physical nature of population trapping in PBG materials. We con-
sider a two-level atom coupled to a coherent two-band PBG re-
servoir, where the atom-coupling fields from the two-band re-
servoir are two coherent waves and depend on the atomic posi-
tion. While the spontaneous emission of a three-level atom em-
bedded in a coherent PBG reservoir has been mentioned by Cheng
[27], the discussions are limited to long-time spontaneous emis-
sion spectra. In contrast, we focus in this work on the threshold for
formation of APB states.

It is shown that the condition for formation of the APB state is
just the criteria for population trapping. By means of this criteria,
we find that the embedded position of the atom plays a key role in
manipulating the formation of APB states. With the variation of
the atomic embedded position, a part of the formation range of
APB states can be moved from inside to far outside the band gap,
and the threshold coupling strength βc, above which the APB state
occurs, can be changed. The direct link between APB states and the
population trapping as well as the steady-state entanglement is
also investigated. These results would be useful for experimental
exploration of Non-Markovian features in quantum systems
composed of quantum dots or Rydberg atoms in PBG materials.
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This paper is organized as follows. The theoretical model is
given in Section 2. Section 3 is devoted to presenting population
trapping caused by the formation of APB states. In Section 4, we
derive the threshold for formation of APB states and discuss the
effect of the atomic position on the threshold. In Section 5, the
steady-state entanglement between the atom and its reservoir
modes and also between different reservoir modes caused by APB
states are discussed. We summarize our results in Section 6

2. Physical model

We consider a two-level atom situated at location r0 in a
double-band isotropic photonic crystal. The Hamiltonian, in the
rotating-wave approximation, for this system is ( = 1)
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where ω0 is the atomic transition frequency, ω ι( )u is the photonic
eigenmode frequency, σ_ = 0 1 and σ =+ 1 0 are the atomic
transition operators, †au (au) and ι

†b ( ιb ) are the creation (annihi-
lation) operators for the upper and lower band reservoirs, re-
spectively. The spatial dependence atom-mode coupling strength
can be given by [28]
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Here V is the quantization volume, d0 and ud are the magnitude
and the unit vector of the atomic dipole moment, respectively, and

* ( )ι( )E ru 0 is the atom-coupling electric field from the upper-band
(lower-band) reservoir. We note that the eigenmodes in photonic
crystals can be characterized by Bloch modes, which are different
from that in free space. As a result, the electric field varies from
point to point within a unit cell of the crystal. Here, we assume
that the distributions of electric fields from the double-band re-
servoir can be written as [27]

θ*( ) = ( ) ( )EE r r ecos , 5u k0 0

θ*( ) = ( ) ( )ι EE r r esin , 6k0 0

where Ek and e are the amplitude and the unit vector of the
electric field with wave vector k, respectively, θ ( )r0 is the angle
parameter seen by the atom located at r0. Thus, the fields of the
two-band reservoir are two coherent modes with phase difference
π/2. The coupling constants can be assumed to be

θ( ) ≅ ( )g gr rcosu k0 0 and θ( ) ≅ ( )ιg gr rsink0 0 with real constant
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Near the two band edges, the dispersion relation has the form
of
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here ω=A k/m c 0
2

m ( = )m 1, 2 , ω ( )c c1 2 is the upper (lower) band edge
frequency and k0 is a constant characteristic of the dielectric

material.
We assume that at time t¼0, the atom is in the excited state 1

and the two reservoir modes are in the vacuum states 0̃u and ˜ ι0 ,

respectively. The state vector is therefore
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where the radiation state ˜ ˜ ι0, 1 , 0u ( ˜ ˜ )ι0, 0 , 1u describes the mode

of upper (lower) band reservoir with frequency ω ι( )u having one
excitation.

Using the Schrödinger equation, the expansion coefficients can
be expressed as a set of coupled equations:
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Formally integrating Eqs. (11) and (12) and substituting the
solution into Eq. (10), we can obtain
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where we have approximated θ( ) = ( ) ( )c t c tr r, cosu k0 0 and
θ( ) = ( ) ( )ιc t c tr r, sink0 0 , and Δ ω ω ω ω= − ≅ −ιc u c c1 2. The memory

kernels from the two-band reservoir read
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The Laplace transform of ( )a t can be given by
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where ρ ω( ) is the density of modes, which has the form of
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