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a b s t r a c t

A reliable algorithm for target tracking based on dynamically adaptive correlation filtering is presented.
The algorithm is capable of tracking with high accuracy the location of a target in an input video se-
quence without using an offline training process. The target is selected at the beginning of the algorithm.
Afterwards, a composite correlation filter optimized for distortion tolerant pattern recognition is de-
signed to recognize the target in the next frame. The filter is dynamically adapted to each frame using
information of current and past scene observations. Results obtained with the proposed algorithm in
synthetic and real-life video sequences, are analyzed and compared with those obtained with recent
state-of-the-art tracking algorithms in terms of objective metrics.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, target tracking is a widely investigated topic in
engineering and computer vision. Video surveillance, vehicle na-
vigation, human–computer interaction, and robotics are examples
of tracking applications. Target tracking consists in estimating the
trajectory of a target from a sequence of observed images while
the target moves through a detection zone. A main challenge in
target tracking is when the observed scene is degraded with ad-
ditive and disjoint noise, nonuniform illumination, blurring, and
by appearance modifications of the target such as pose changes,
rotations, and scaling. Additionally, eventual occlusions of the
target and the need of a fast algorithm execution are important
issues that a tracking algorithm must solve [1–3].

In the last few years, several algorithms have been proposed
with the aim of solving real-life tracking problems [1–3]. Some of
these algorithms require a strong a priori knowledge of the target
for offline training purposes before tracking begins [4]. Other al-
gorithms only require basic information of the target because they
use learning and adaptation mechanisms to train the system online
during tracking operation [2,5]. The latter algorithms are called
online training algorithms and are preferred over offline training
algorithms because they have higher flexibility. One well-known
online training algorithm is the multiple instance learning (MIL)
[6]. This algorithm operates by classifying image templates in sets
of true- and false-class images collected during tracking operation.
The true-class set contains image templates of the expected views

of the target having a similar appearance to that of the actual view
of the target in the scene. The false-class set contains scene frag-
ments to be rejected having similar contents to those of the target.
A successful state-of-the-art tracking algorithm is the structured
output tracking with kernels (Struck) [7]. The Struck algorithm
employs a structured support vector machine (SVM) to directly
link the target's location space with the training samples collected
during tracking operation. Struck has exhibited excellent results in
many tracking benchmarks [2,3]; thus, it is often used as a re-
ference for comparison with new tracking algorithms. Another
important tracker is the tracking learning detection (TLD) [5]. The
TLD algorithm uses a set of structural constraints with a sampling
strategy that exploits a boosting classifier. The TLD algorithm is
able to track the position of a target in a video sequence with
tolerance to scene perturbations.

An attractive alternative to existing tracking algorithms is given
by correlation filtering. Correlation filters have a good formal basis
and they can be implemented for real-time applications either in
hybrid opto-digital correlators [8,9] or in digital programmable
devices such as graphics processing units (GPUs) [10] by exploiting
massive parallelism. A correlation filter is a linear system in which
the coordinates of the maximum intensity value in the output
correlation function are estimates of the target's coordinates
within the observed scene [11]. These filters can be designed to
recognize targets in cluttering and noisy environments [12–17].
Also, they are able to estimate with high accuracy the location of a
target in a scene with tolerance to nonuniform illumination and to
geometrical modifications of the target [18–22].

Our hypothesis is that the performance of target tracking can
be significantly improved in terms of efficiency of target detection
and accuracy of location estimation of the target by applying a
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dynamically adaptive correlation filtering to multiple frames.
Various proposals for performing target tracking based on corre-
lation filtering have been suggested [9,25–27]. The majority of
these methods utilize a bank of correlation filters which are con-
structed offline before tracking process begins using available
views of the target [9,25].

Recently, Bolme et al. [28] suggested the use of an adaptive
correlation filtering for target tracking by exploiting an online
training approach. This algorithm is competitive with respect to
standard tracking algorithms, but with lower complexity [29,2]. In
this approach, a correlation filter is used to detect and locate the
target in the observed scene in each frame. The filter is updated
online according to current and past scene observations, and by
taking into account intraclass distortions of the target. The used
filter in this algorithm is the minimum output sum of squared
error (MOSSE) [28]. The MOSSE filter produces a prespecified
output correlation plane in response to a given set of training
images. The main limitation of the MOSSE filter for online training
tracking is that since the target is in constant motion the actual
coordinates of the target required for constructing the filter cannot
be precisely known. This situation can introduce a considerable
bias in the location estimation of the target [30].

In this work, we propose a reliable algorithm for target tracking
in noisy scenes using an online training approach. The proposed
algorithm employs a dynamically adaptive correlation filtering
designed as a combination of filter templates optimized for de-
tection and location estimation of the target in an observed scene.
First, a set of geometrically distorted versions of the reference
image of the target is constructed. Afterwards, an optimal filter
template is designed for each created image. The filter templates
are combined to form a single composite filter. One can note, that
by using the suggested approach we avoid the need to specify
beforehand the expected location of the target in the next frame,
as in the case of MOSSE filter. The proposed tracking algorithm
incorporates a prediction mechanism that exploits the temporal
relationship of input frames in order to improve the tracking ac-
curacy by taking into account the kinematics of the target. Fur-
thermore, the proposed algorithm integrates an efficient re-in-
itialization mechanism that automatically reestablishes the track-
ing if the system fails.

The paper is organized as follows. Section 2 explains the pro-
posed filter design for target tracking. Section 3 describes the
suggested algorithm for robust target tracking. Computer simula-
tion results obtained with the proposed approach are presented
and discussed in Section 4. This results are compared with those
obtained with successful state-of-the-art tracking algorithms in
terms of detection efficiency and tracking accuracy. Finally, Section
5 presents our conclusions.

2. Design of composite correlation filters using optimized
templates

We are interested in the design of a correlation filter able to
recognize a target from an observed scene when it is corrupted
with additive and disjoint noise. In addition, the filter needs to be
robust in recognizing different views of the target. Let

= { ( ) = … }T t x y i N, ; 1, ,i be a set of training images given by dif-
ferent views of the target to be recognized. The input scene is
assumed that is formed by a target ( )t x y, embedded into a disjoint
background ( )b x y, at unknown coordinates τ τ( ),x y , and the scene
is corrupted with zero-mean additive noise ( )n x y, , as follows:

τ τ τ τ( ) = ( − − ) + ( ) ¯ ( − − ) + ( ) ( )f x y t x y b x y w x y n x y, , , , , , 1x y x y

where ¯ ( )w x y, is a binary function defined as zero inside the target

area and unity elsewhere. The optimum filter for detecting the
target from Eq. (1) in terms of the signal-to-noise ratio (SNR) [12]
and the minimum variance of measurements of location errors
(LE) [18], is the generalized matched filter (GMF) [18,15], whose
frequency response is given by
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where ( )T u v, and ¯ ( )W u v, are the Fourier transforms of ( )t x y, and
¯ ( )w x y, , respectively; μb is the mean value of the background image
( )b x y, ; and ( )P u v,b and ( )P u v,n denote spectral density functions

of μ( ) = ( ) −b x y b x y, , b0 and ( )n x y, , respectively. The symbol “⊗”

denotes convolution.
The use of correlation filters for target tracking is usually per-

formed by focusing the processing on a small fragment of the in-
put scene in each frame, where it is assumed that the target is
contained. It is important to consider that the appearance of the
target can be different in each observed frame.

Thus, two important issues must be addressed in order to de-
sign a reliable correlation filter for target tracking based on the
filter model of Eq. (2). First, the support region function of the
target ¯ ( )w x y, is explicitly unknown. Also, the statistical properties
of the background and additive noise processes in the scene
fragment can be time-variant. As a result, the scene parameters
required to synthesize the GMF in Eq. (2) must be locally estimated
for each observed frame. Second, the filter must be able to re-
cognize the target and its intraclass distortions with a single cor-
relation operation.

It can be seen that the size of the scene fragment to be processed
is small compared with the size of the whole scene image. Also, the
area of the scene fragment is almost fully occupied by the area of the
target within the fragment. In this case, by assuming that the region
of support of the fragment is equivalent to the region of support of
the target, we only have a small detection error. Hence, the GMF to
detect a target from a scene fragment with an explicitly unknown
support function can be approximated by
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Next, in order to correctly estimate the functions ( )P u v,b and ( )P u v,n

for filter synthesis in Eq. (3), suppose that the background in the
fragment has a separable exponential covariance function [31]; thus

( )P u v,b can be computed by
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where σb
2
0
is the variance of ( )b x y,0 and ρx and ρy are correlation

coefficients in the x and y directions respectively. These coefficients
can be a priori known; otherwise, they can be estimated from the
observed scene [4].

Now, consider that the noise-free image
τ τ τ τ( ) = ( − − ) + ( ) ¯ ( − − )r x y t x y b x y w x y, , , ,i x y x y in the fragment,

and the additive noise ( )n x y, are independent. Thus, the covar-
iance function of the observed fragment is

( ) = ( ) + ( )C x y C x y C x y, , ,f r n , where ( )C x y,r is the covariance func-
tion of ( )r x y, and σ δ( ) = ( )C x y x y, ,n n

2 is the covariance function of
white noise. Note that the noise variance can be estimated as
σ = ( ) − ( )C C0, 0 0, 0n r f

2 ; however, ( )C 0, 0r is unknown. One can
note that ( ) =C x y, 0n , ∀ ( ) ≠x y, 0. Hence, the values of

( ) ( ) ≠C x y x y, ; , 0f can be used to estimate ( )C 0, 0r . This can be
done by using linear extrapolation, as

( ) = ( ) − ( ) ( )C C C0, 0 2 0, 1 0, 2 . 5r f f

Moreover, let ( )h x y,i be the impulse response of a GMF
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