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a b s t r a c t

Impact of the boundaries on transversely localized modes of a truncated one-dimensional disordered
optical lattice is numerically studied. The results show lower modal number density near the boundaries
compared with the bulk, while the average decay rate of the tail of localized modes is the same near the
boundaries as in the bulk. It is suggested that the perceived suppressed localization near the boundaries
is due to a lower mode density: on average, it is less probable to excite a localized mode near the
boundaries; however, once it is excited, its localization is with the same exponential decay rate as any
other localized mode.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Anderson localization was originally described as the absence
of diffusion for electrons in random electronic lattices due to
strong scattering and interference [1,2]. However, it was later
realized that the concept is inherently a wave phenomenon and
was observed in highly scattering classical wave systems including
optics, acoustics, elastics, and electromagnetics [5,4,6,3,7–9], and
various quantum optical systems, such as atomic lattices [10].
Transverse Anderson localization was introduced by Abdullaev
et al. [11] and De Raedt et al. [12] where a beam of light is localized
in transverse dimension(s) of a transversely disordered waveguide
but propagates freely in the longitudinally invariant direction.
Several observations of transverse Anderson localization have
been reported over the past few years [14,15,13,16–18].

Recently, Anderson localization of optical waves near the
boundaries has been discussed theoretically [20,19] and experi-
mentally [21,22]. A delocalizing effect near the boundaries of one
dimensional (1D) and two dimensional (2D) random lattice wa-
veguides has been reported, so that a higher level of disorder near
the boundaries is claimed to be needed to obtain the same level of
localization as in the bulk [20,21]. These reports seemed to be in
contrast with our experimental observation of transverse Ander-
son localization in a glass optical fiber, where a strong localization
happens near the outer boundary of the fiber and no trace of

localization is observed in the central regions [23]. The disagree-
ments were explained by considering the non-uniform distribu-
tion of disorder in the fiber. The disorder was observed to be much
stronger near the outer boundary of the fiber which resulted in
stronger localization in that region.

In Ref. [21], lower mode density near the boundary of lattice is
considered as the reason behind the less localized average in-
tensity profile, which is obtained both experimentally and nu-
merically using the beam propagation method (BPM) [24,25]. For
the BPM, an initial excitation profile is propagated through the
lattice waveguide and the final output pattern reveals the extent of
localization. To uncover the impact of the boundary on localiza-
tion, the initial excitation profile is adjusted once to cover the
central regions of the waveguide and then its edges, and the
output beam profiles are compared with each other. However, this
method is not independent of the excitation profile and it is de-
sirable to use a method that can quantify the effect of the
boundary on localization independent of the profile of the input
beam [26,27].

Recently, Karbasi et al. [28] used a modal analysis to explore
localization behavior of a disordered lattice waveguide. The modal
analysis offers a clear intuitive description of the localization
phenomenon independent of the physical properties of the ex-
ternal excitation. Here, we carry out a detailed numerical in-
vestigation for the effect of boundaries on the formation of loca-
lized modes of a 1D disordered optical lattice waveguide using the
modal perspective. Our results show that the average decay rate of
the tail of Anderson localized modes is the same near the
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boundaries as in the bulk. Of course, the boundary-side tail of any
mode which is localized near the boundary decays according to
the boundary index step; however, the side that faces the lattice
decays with the same average exponent as any other mode which
is located anywhere else in the lattice.

Another observation presented here is that the modal number
density near the boundaries is lower compared with the bulk,
confirming similar results obtained by Ref. [21]. Therefore, we
suggest that the suppressed localization near the boundaries is
due to a lower mode number density rather than a weaker ex-
ponential decay of the near-boundary localized modes. In other
words, it is less probable to excite a localized mode near the
boundaries; however, once it is excited, its localization is with the
same exponential decay rate as any other mode (on the disordered
lattice side).

2. Modal analysis

Modal analysis as presented in Refs. [14,29,30] has two main
advantages over other techniques such as the beam propagation
method for the investigation of the localization-related phenom-
ena in disordered optical waveguides: (1) A standard technique to
analyze optical waveguides is the modal method. The modal
method provides an intuitive framework to understand the results
related to the transverse Anderson localization of light in a lan-
guage that is quite familiar in the domain of optical waveguides.
(2) The modal analysis allows us to study the localization phe-
nomenon independent of the excitation profile while containing
all the information provided by the beam propagation method
[28]. In this work, we have chosen to calculate the transverse
electric (TE) guided modes of the disordered waveguide using the
finite element method (FEM) presented in Ref. [31].

Refractive index profile of the disordered lattice in this paper is
the same as the one in Ref. [28]. Briefly, the wave-guiding profile is
a disordered lattice, which is surrounded by a cladding with re-
fractive index nc on both sides. The disordered lattice is con-
structed by stacking a collection of dielectric slabs with refractive
index of n0 and n1 ( <n n0 1). In our analysis, we have chosen the
refractive index of cladding region as =n nc 0, which resembles the
practical disordered waveguides written on the silica glass by
femtosecond pulses [32,21,33]. Fig. 1(a) shows the refractive index
profile of an ordered waveguide versus a disordered one, where
for the ordered waveguide the thickness of each slab is chosen to
be Λ λ¯ = 2 while for the disordered waveguide the thickness of
each slab is randomly chosen with uniform probability to be in the
interval of [ Λ δΛ Λ δΛ¯ − ¯ +, ] with δΛ λ= . The strength of spatial
disorder is defined as δΛ Λ̄/ , which is kept fixed at 50% level in this
manuscript for simplicity. However, the reported observations are
general and apply to other levels of spatial disorder. In order to
observe transverse Anderson localization, the disorder can be

introduced in many different ways into the waveguide, such as
diagonally [1] or off-diagonally [15,34,35]; our method is intended
to be closely related to the recent implementations of disordered
optical fibers of [12,16], and relies on a combination of diagonal
and off-diagonal disorder. Fig. 1(b) shows the refractive index
profile of the disordered structure.

For each guided mode, using Eqs. (1)–(4), position (x), width
(s2), asymmetry (s3), and skewness (S) of the mode across the
waveguide [36] are calculated, respectively, according to:
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I(x) is the intensity of the mode in the waveguide and it is nor-
malized such that ∫ ( ) =

−∞

+∞
I x dx 1. In these equations, x̄ is a mea-

sure of the position of the modes across the lattice, s2 is a measure
of width of the modes meaning that a larger s2 is proportional to a
wider mode intensity profile distribution, s3 is a measure of mode
asymmetry in a sense that a zero value of s3 is equivalent to a
totally symmetric mode, and S is a measure of mode asymmetry,
like the third moment (s3), except that it is normalized by the
mode width.

We investigate these characteristic features for 2000 realiza-
tions of the random lattice for several values of refractive index
difference (Δn). To study the localization behavior as a function of
location in the waveguide, the lattice is divided into 24 equal bins
of width λ10 each. The nth bin on the horizontal line is identified
by the position belonging to the interval,

λ λ∈ [( + ) ( + ) ]x n n10 5 , 10 15 , where = …n 0, 1, 2, , 23.
λ λ= ( = )x x25 225 signifies the leftmost (rightmost) side of the

disordered lattice, and λ= ( = )x x0 250 signifies the leftmost
(rightmost) corner of the cladding in the waveguide.

All the calculated modes are categorized based on their posi-
tion, where each mode is placed in one of the bins. Each bin is
associated with certain number of modes and the statistics asso-
ciated with that bin can be studied independently. Therefore, we
can judge with sufficient statistics whether the position in the
waveguide and the distance from the boundaries affect the char-
acteristics (width, spatial density, skewness and decay exponent)
of the modes. The simulations are carried out for a wavelength of

Fig. 1. Sample refractive index profiles of ordered (left) and disordered (right) slab waveguides are shown.
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