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a b s t r a c t

An accurate and fast method for guided modes extraction in monolayer colloidal crystals and their in-
verse replicas is presented. These three-dimensional structures are composed of a monolayer of spherical
particles that can easily and simply be prepared by self-assembly method in close packed hexagonal
lattices. In this work, we describe how the guided modes, even or odd modes and light cone boundary
can be easily determined using phase variations of reflection and transmission coefficients. These
coefficients are quickly calculated by Fourier modal method. The band structures are obtained for a
monolayer of polystyrene particles and two-dimensional TiO2 inverse opal by this proposed method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Controlling the light propagation is possible by periodic mod-
ulation of refractive index in structures that their lattice constants
are comparable to light wavelengths. Photonic crystals are struc-
tures capable of manipulating the flow of light by a property
known as photonic band gaps.

Colloidal crystals are periodic arrays of monodisperse colloidal
particles, and can be considered as a class of photonic crystals.
They can be prepared in self-assembly approaches, in an easier
manner and with lower costs compared to photonic crystal fab-
rication methods, including optical lithography and etching tech-
niques [1,2].

Two-dimensional or three-dimensional periodic colloidal
crystals attract great interest due to these challenges in the fab-
rication of nanoscale photonic crystals. They can find applications
in many areas like bio and chemical sensing [3], solar cells [4],
display, templates for fabrication of other materials, and miniature
diagnostic systems [5]. Also, much progress has been achieved in
fabrication of colloidal crystals with point, line and planar defect in
recent years [6,7].

Two-dimensional colloidal crystals are monolayer arrays of
monodisperse colloidal microspheres or nanospheres which are
prepared mostly and commonly in hexagonal close-packed

patterns by different self-assembly methods such as drop coating,
dip-coating, spin-coating, electrophoretic deposition and self-as-
sembly at the gas–liquid interface [8]. Non-close-packed and
binary colloidal crystals are other types of two-dimensional col-
loidal crystals. Monolayer inverse opals as well as two-dimen-
sional periodic arrays of nanobowls, nanocaps and hollow spheres
are samples of inverse replicas of monolayer colloidal crystals
which have been fabricated recently [9].

The confinement of guided modes in monolayer colloidal
crystals and their inverse replicas depend on the refractive index
of the dielectric spheres and the substrate which they rest on it.
High refractive index contrast in these structures lead to three-
dimensional confinement of light similar to the photonic crystal
slabs which is acquired by two-dimensional band gaps in the
plane of periodicity and total internal reflection in the vertical
direction [10,11]. Therefore, these colloidal structures can be used
in couplers, wavelength filters and optical interconnects as well as
optical sensors. Determining waveguide modes of these colloidal
structures are very important in design and optimization of these
optical devices.

Extracting the waveguide modes of multilayered structures can
be done by solving an eigenvalue equation. Both guided and leaky
modes in lossless or lossy structures can be found as solutions of
the eigenvalue equation [12]. Reflection pole method is another
approach that is used for the determination of mode propagation
constants in lossless and lossy planar structures [13]. This ap-
proach uses the simple principle that modes are the poles of re-
flection or transmission coefficients of a multilayered system. The
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modes and light confinement in monolayer colloidal crystals is
studied by full numerical methods, like finite-difference time-do-
main (FDTD) which are time-consuming [14].

Here we propose a method to determine guided modes of a
monolayer of colloidal particles and its inverse replica by following
the phase variations of reflection and transmission coefficients.
These index-guided modes are poles of reflection and transmis-
sion coefficients [13] and based on the Bode diagram theory we
demonstrate that these index-guided modes can be obtained ef-
ficiently and precisely from phase variations equal to π of (0,0)th
reflected and transmitted order. The reflection and transmission
coefficients of different diffracted orders are calculated by Fourier
Modal Method (FMM). Also, we will show how to distinguish even
and odd modes, and how the lower boundary of light cone is
determined in the proposed method. The obtained modes form
the band structures of these slabs.

This paper is organized as follows. In Section 2 the brief review
about FMM implementation is presented. Then, guided mode ex-
traction from reflection and transmission coefficients is described
with more details in Section 3. Band structures are obtained for
two different structures in Section 4. Finally, the conclusions of
this work are summarized in Section 5.

2. FMM implementation

An efficient and accurate calculation method of reflection and
transmission coefficients and their subsequent phase is necessary
for guided mode extraction in this approach.

In most of two-dimensional colloidal crystals, there is a hex-
agonal close packed of dielectric spheres between two homo-
geneous regions. These structures could be analyzed by various
numerical methods like rigorous couple wave analysis (RCWA)
[15]. Fourier modal method (FMM) is the popular modal method
for the analysis of crossed gratings, with simple implementation
[16]. Its convergence rate is improved relative to RCWA by apply-
ing appropriate factorization rules. In this section only required
formulation and necessary details for easy implementation of
FMM in 2D colloidal crystals are introduced.

A monolayer of colloidal crystals is two-dimensionally periodic

as shown in Fig. 1. As mentioned above gratings that are uniform
in vertical direction could be analyzed by FMM. Consequently,
using staircase approximation a monolayer of colloidal crystals is
divided into 2lþ1 sublayers in the z direction. These sublayers of
the 2D colloidal crystal are hexagonal lattices of cylindrical rods
with various radiuses so that the radius of the middle sublayer is
equal to the radius of spherical particles, i.e. R.

Due to the symmetry of a sphere in z direction, it is sufficient
that only in lþ1 regions of 2lþ1 sublayer, the main eigenvalue
equation of FMM, i.e.
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is solved where F and G are two square matrices [16]. This ei-
genvalue problem is acquired in a general nonrectangular co-
ordinate system ( )x x x, ,1 2 3 which the x1 and x3 axes are parallel to
the x and z axes and the angle δ is between the x2 axis and y axis.
Blocks of these significant matrices are made by applying Fourier
factorization rules, i.e. Laurent's and inverse rules to the Fourier
series coefficients of permittivity distribution ϵ( )x x,1 2 in each
sublayer. Note that the calculations of Fourier series coefficients
and the angle δ depend on the type of selected unit cell. In this
equation k0 is π λ2 / where λ is the vacuum wavelength and the
mediums are assumed to be nonmagnetic μ( = )1 . Also, kz's are
propagation constants of different orders in the z direction and
selected such that
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The obtained eigenvectors and eigenvalues in each sublayer of
2D colloidal crystal form the matrices W1, W2 and ϕ which are
used in the S-matrix algorithm [17]. These matrices can be written
as
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where = ( + )h R l2 / 2 1 demonstrate the thickness of each sublayer.
Note that S-matrix algorithm is used to match boundary condi-
tions at the interfaces between 2lþ1 sublayers and top and bot-
tom homogeneous regions [17].

The electric and magnetic eigenvectors in homogeneous re-
gions, i.e. bottom and top mediums of spherical particles are cal-
culated just by Rayleigh expansion without the need to solve ei-
genvalue problem. The main matrices for S-matrix algorithm in
the pth region are [18]
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Fig. 1. (a) Schematic view of two-dimensional colloidal crystals. These structures
are composed of a monolayer of hexagonal close packed spherical particles. The
dielectric constant of the bottom layer is ϵ1. (b) Hexagonal lattice of cylindrical rods
that is formed by stair case approximation in x3 direction. The x1 and x2 axes are
illustrated in the parallelogramic unit cell.
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