FISEVIER

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG

Youqing Wang a, Changyu Shen a,b,*, Weimin Lou a, Fengying Shentu a

- ^a Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
- b State Key Laboratory of Optical Instrumentation, Zhejiang University, Hangzhou, Zhejiang 310027, China

ARTICLE INFO

Article history:
Received 11 June 2015
Received in revised form
2 November 2015
Accepted 3 November 2015
Available online 21 November 2015

Keywords: Strain sensor Mach–Zehnder interferometer Long period fiber grating Fiber up-taper

ABSTRACT

A highly sensitive and compact fiber-optic strain sensor was presented and experimentally demonstrated. The sensor is based on an in-line fiber Mach–Zehnder interferometer (MZI), which is constructed by connecting a long-period fiber grating (LPG) with an up-taper. With the increasing of the axial strain on the sensor, both of the up-taper's diameter and the light coupling efficiency decreased. By measuring the transmission intensity changes of the resonant dips at wavelength ~ 1553.4 nm under the fiber axial strain ranging from 0 to 590 $\mu\epsilon$, the sensitivity of 0.026 dB/ $\mu\epsilon$ was obtained, which is almost 2 times of the existing similar strain sensor. And the results were also confirmed by simulations.

© 2015 Elsevier B.V. All rights reserved.

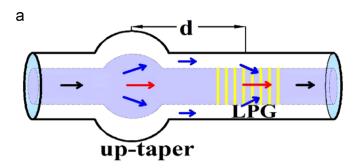
1. Introduction

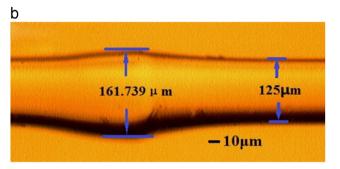
Fiber-optic strain sensors have been widely used for the health monitoring of the building, bridge, dam and so on. Fiber Bragg grating (FBG)-based sensor is widely applied to measure strain and temperature simultaneously [1,2]. A single mode-multimodesingle mode (SMS) fiber structure had also been proposed for strain measurement [3,4]. Long-period fiber grating (LPG) has been demonstrated in a wide range of sensing areas since first reported in 1996 by Vengsakar et al. [5]. The large applications of LPG are mainly for its low insertion loss, compactness, sensitiveness to surrounding environment and etc. It can also resolve the problem of the relative large bandwidth of resonant dips, so the transmission capacity and measurement precision for sensing can be greatly improved. Typical fiber-grating-based modal Mach-Zehnder interferometers (MZIs) are LPG pair [6], the fiber fundamental core mode can be coupled into the cladding by the first LPG to excite the high-order cladding modes, and then be recoupled into the core by the second LPG, the interference between the fiber fundamental core mode and different cladding modes can be seen in the OSA. The coupling efficiency mainly depends on the distance between two LPGs.

In this paper, a detailed experimental demonstration along

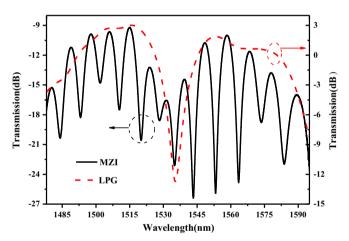
E-mail addresses: wyq91123@sina.com (Y. Wang), shenchangyu@cjlu.edu.cn (C. Shen).

with theoretical analysis of a fiber-optic strain sensor based on MZI exploiting up-taper and LPG is presented and discussed. By measuring the transmission intensity changes of the resonant dips at wavelength $\sim\!1553.4\,\mathrm{nm}$ under the fiber axial strain ranging from 0 to 590 $\mu\epsilon$, the sensitivity of 0.026 dB/ $\mu\epsilon$ was obtained, which is almost 2 times of the existing similar strain sensor.


2. Sensor fabrication and principle


Schematic diagram of the proposed fiber-optic MZI is shown in Fig. 1(a). It consists of an up-taper and a LPG. The space between the up-taper and LPG is \sim 15 mm [7]. When the light is launched into the fiber (black arrow), massive light energy is coupled from the core to excite a large number of high-order modes that guided by the cladding of the fiber (blue arrow), and the remaining light still propagates in the core as the fundamental core mode (red arrow). Then, the cladding modes are re-coupled into the fiber core by the LPG to interfere with the fundamental core mode. Lengths of this kind MZI's two arms are exactly same, but the optical lengths are different because of the different effective indices of each optical length [8]. The transmission spectra of the proposed structure are shown in Fig. 2 (black line).

LPG was fabricated in a single mode fiber (SMF-28) by high-frequency CO_2 laser pulses (Han's Laser CO_2). The grating period and length of the LPG are $600 \, \mu m$ and $24 \, mm$, respectively. Its center wavelength is $\sim 1535 \, nm$, as shown in Fig. 2 (red line).


Fig. 1(b) is the microscopic image of the up-taper. It was made

^{*} Corresponding author at: Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China.

Fig. 1. (a) Schematic configuration of the structure, (b) microscopic image of the up-taper. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. Transmission spectra of the proposed MZI sensor and the LPG. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

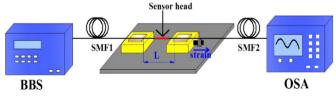


Fig. 3. Schematic of experimental setup.

easily by using a fusion splicer (Fujikura FSM-60s) under the manual splicing mode, where we used a much larger overlap distance of 130 μ m to replace the common setting of 10 μ m. Diameters of the fiber core and the cladding for the up-taper are \sim 15 and 161.74 μ m, respectively.

Additionally, the light energy which is coupled into the fiber cladding is depended on the up-taper's diameter [9,10]. Accordingly, changes of interference intensity of the proposed MZI can be given by [11,12,15],

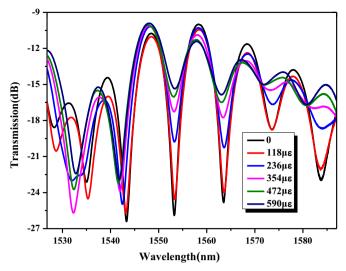


Fig. 4. Transmission spectra variation against the different axial strains.

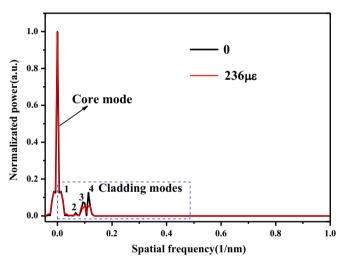
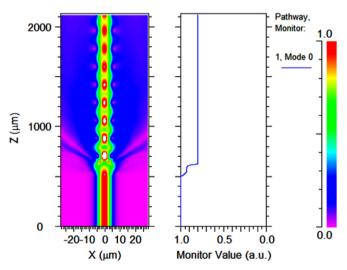



Fig. 5. Spatial frequency spectra of the proposed sensor.

Fig. 6. Simulation of the light propagating through the up-taper (D_t =15 μ m).

$$K = \frac{2\sqrt{I_{core}/I_{clad}}}{1 + I_{core}/I_{clad}} \tag{1}$$

where K is the fringes visibility. I_{core} and I_{clad} are the light intensity

Download English Version:

https://daneshyari.com/en/article/1533519

Download Persian Version:

https://daneshyari.com/article/1533519

<u>Daneshyari.com</u>