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a b s t r a c t

We investigate the effect of non-paraxiality in the dynamics of spatial dispersive shock waves in the
defocusing nonlinear Schrödinger equation. We find that the lowest order correction in the degree on
non-paraxiality enhances the wave-breaking and imposes a limit to the highest achievable spatial
spectral content generated by the shocks.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dispersive shock waves (DSWs) have been the subject of in-
tense research in the field of nonlinear waves [1,2], with specific
applications in Bose–Einstein condensation [3–7] and nonlinear
optics [8–11], and are part of the large number of hydrodynamic-
like phenomena [12] that are considered important because of
their links with quantum fluids [13], turbulence [14,15], disordered
and curved systems [16,17], and their application to laser physics
[18].

With specific reference to nonlinear optics, all the reported
theoretical investigations in the spatial domain are based on the
paraxial approximation of the propagation equation of the elec-
tromagnetic field (as for example considered in [12,16,19,20]).
However shock waves are highly nonlinear processes that induce a
substantial amount of spectral broadening. One can hence expect
that non-paraxial terms are relevant in the development of the
wave-breaking phenomena because waves travelling at large an-
gles with respect to the propagation direction can be generated by
the excitation of steep spatial wavefronts.

Non-paraxiality was previously investigated in the formation of
solitons [21-27], on the contrary, non-paraxial DSWs have not
been considered.

An open issue is the effect of non-paraxiality on the features
arising from the wave-breaking phenomena as, in particular, the
spectral content and the position in which the shock is formed
(shock point). More in general, one can argue about the effect of

the non-paraxial terms in the hydrodynamic model that is often
considered to theoretical analyses of the shock generation.

In this paper, we investigate theoretically and numerically the
effect of non-paraxiality in the DSWs. The approach is based on
theory of the characteristic lines that turn our to be formally
identical to the trajectories of a massive classical particle with first
order relativistic corrections to the Newton law. The analysis al-
lows to quantify the limitations to the spatial spectral broadening
induced by the non-paraxial corrections to the nonlinear Schroe-
dinger equation, and the corresponding variation of the shock
point.

This paper is organized as follows. In Section 2, we review the
leading model and the derivation of the hydrodynamic limit. In
Section 3, we analyze the hydrodynamic regime and derive the
equations for the characteristic lineas in the one-dimensional case.
In Section 4, we report the numerical simulations of the leading
model in the two-dimensional (2D) case. Conclusions are drawn in
Section 5.

2. Model

At the lowest order of perturbation the non-paraxial correction
to the Foch–Leontovich equation for a paraxial beam described by
a complex envelope A, normalized such that A 2| | is the optical in-
tensity, is written as [25]
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letting λ be the wavelength, k n2 /0π λ= the wavenumber, n0 the
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bulk refractive index, and taking a nonlinear Kerr medium, with
refracting index perturbation n A2

2| | . In Eq. (1) we neglect vectorial
corrections to the nonlinear term [28,23], as we make reference to
highly nonlinear processes, such as thermal effects and electro-
strictive nonlinearity, for which vectorial effects are known to be
negligible [29,30].

We consider the evolution of a focused Gaussian beam with
profile at Z¼0, A I X w Y wexp /4 /40
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2= ( − − ) where w0 is the

beam waist. By introducing the scaled coordinates

x y z X w Y w Z L, , / , / , / d0 0( ′ ′ ′) = ( ), with L kwd 0
2= the diffraction length,

and the normalized variable A I/ 0ψ = , Eq. (1) can be conveniently
rewritten as follows, when n 02 < :
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By writing the normalized field as r z,ψ ( ′ ′)=

r z i r z, exp ,ρ ϕ( ′ ′) [ ( ′ ′)] , where r x y2 2′ = ′ + ′ , we can study Eq. (2)
in the framework of the WKB approximation [31-33].

In order to resort to the hydrodynamic approximation
we introduce a small scaling factor η such that

r z r z i r z, , exp , /ψ ρ ϕ η( ) = ( ) [ ( ) ], z z /η→ ′ , and x y x y, / , /η η( ) → ( ′ ′ );
substituting in Eq. (2) we obtain
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Analytical treatment of the problem under consideration can be
done in hydrodynamical approximation in 1D case as detailed in
the following. As we are interested to the experimentally relevant
2D case, we compare in a later section the following theoretical
results with 2D numerical simulations of Eq. (2).

At the lowest order in η, the hydrodynamical approximation
prescribes a density xρ ρ= ( ) independent by the propagation di-
rection z, hence Eq. (3) reduces to the following equation for the
phase ϕ:

x
1
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By defining a velocity field as v xϕ= and differentiating w.r.t. z, we
obtain the following equation:

v vv v v x
2

. 5z x x x
3ε ρ+ + = − ∂ ( ) ( )

We notice that Eq. (5) is formally similar to the Hopf equation, the
solutions of which are known to develop the wave-breaking
phenomenon [34]. Non-paraxiality induces the higher order term
v vx

3 .

3. Analysis of characteristic lines

The wave-breaking phenomenon supported by Eq. (5) is a
consequence of the occurrence, at the shock point, of a singularity
in the velocity profile. After the shock point in the hydrodynamical
limit, for the nonlinear propagation equation (Eq. (1)) this results
into a formation of fast oscillations that regularize the singularity.
The mathematical analysis in the hydrodynamical limit is de-
termined in the following by the method of characteristic lines.
Such a method (see for example [34]) is a mathematical technique
that enables to solve quasi-linear one dimensional partial

differential equations (PDEs) by using a system of ordinary dif-
ferential equations (ODEs). The characteristic lines are the trajec-
tories resulting from ODEs for different initial conditions and give
the direction of the energy propagation of the PDE. The point
where the characteristic lines cross each other is the shock point,
i.e. the point where the solution of the PDE becomes a multi-va-
lued function. In our case this method allows us to express the
solution of Eq. (5) in terms of Hamiltonian system of ordinary
differential equations:
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ρ( ) = + + ( )ε is the conserved Hamiltonian, and

f x xxρ( ) = − ∂ ( ), is a conservative force, with the intensity profile
xρ ( ) playing the role of the potential. The non-paraxial term,

weighted by ε, gives a contribution which resembles the re-
lativistic correction to the motion of a particle. In fact, in special
relativity the dynamics of a single particle subject to a con-
servative force xxρ−∂ ( ) with rest mass, m0, is given by the Ha-
miltonian H x v c x,RL

2γ ρ( ) = + ( ) with the Lorentz factor

v c1/ 1 /2 2γ = − and c the velocity of light. In the limit v c< < ,
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c
0

2
2

3

8

0 2 0 4

2
ρ( ) ≃ + + + ( ); in units such that m 10 = ,

this gives the Hamiltonian dynamics (6) with c3/ 2ε = .

3.1. Maximal velocity

The analogy with the relativistic dynamics indicates that the
effect of non-paraxiality reduces the spatial spectrum resulting
from the shock. Indeed the velocity v of the effective particle
corresponds to wavector k of an optical ray. By using the con-
servation of H x v,( ) in (6), the case of an input beam with a flat
phase front corresponds to an initial distribution particles with zero
velocity positioned in a potential xρ ( ) given by the intensity profile
of the beam. Hence, at z¼0 all the particles have a distribution of
potential energy xρ ( ) that, upon propagation, is converted in kinetic
energy. The condition H x v v v x, /2 /82 4ε ρ( ) = + = ( ) gives the max-
imal velocity vMAX of a characteristic line originally placed in x. For
the considered Gaussian beam x xexp /22ρ ( ) = ( − ), the particles
located in proximity of the peak intensity x¼0 have the highest
velocity and collide upon propagation with those located at the
beam edges causing the hydrodynamic shock (see Fig. 1(a)). The
conservation of H x v,( ) shows that vMAX is reduced when increasing
ε:

⎜ ⎟⎛
⎝

⎞
⎠v v O0 1

4
,

7MAX MAX
2ε ε ε( ) = ( ) − + ( )

( )

with v 0 2MAX ( ) = in the Gaussian case x xexp /22ρ ( ) = ( − ). Eq. (7)
predicts that after the shock, non-paraxial effects limit the max-
imal achievable velocity. The distribution of velocity is directly
measurable by the far-field in optical measurements [19].

3.2. Shock point

As shown in Fig. 1(a) the shock is signaled by the caustic re-
sulting from the envelope of characteristic lines at the boundary of
the beam. The lines in these regions are parabolic, and starting
from a point x0 with v¼0, they can be analytically approximated
by solving Eq. (6) with f x f x0( ) = ( ) approximately constant, which
gives an estimate of the shock point zS. Considering two in-
finitesimally near characteristic lines starting at x dx/20 + and
x dx/20 − indicated respectively as x z( )+ and x z( )− , the shock point
can be found by the condition x z x z( ) = ( )+ − . Eqs. (6) can be solved
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