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a b s t r a c t

We use numerical simulations to study interaction of co- and counter-propagating pulses in disordered
multilayers with noninstantaneous Kerr nonlinearity. We propose a statistical argument for existence of
the disorder-induced trapping which implies the dramatic rise of the probability of realization with low
output energy in the structure with a certain level of disorder. This effect is much more pronounced in
the case of two interacting pulses than in the single-pulse regime and does not occur in the strictly
ordered system at the same intensity of the pulses. Therefore it cannot be explained simply as a result of
increase in strength of nonlinear light-matter interaction.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since Philip W. Anderson's breakthrough paper [1], study of
localization and other matter-wave effects in solid-state dis-
ordered systems has become a broad and fruitful field of research.
Moreover, the notion of Anderson localization stimulated research
of wave phenomena in other contexts, including classical wave
dynamics in disordered media and the connections with meso-
scopic physics [2–5]. In optics, this interest has led to the experi-
mental observation of the Anderson localization of light in 1990s
and 2000s [6–8]. Discussion of subsequent progress in disordered
optics and photonics can be found in recent reviews [9,10].

In this paper, we deal with some aspects of nonlinear optics of
disordered photonic structures. For detailed discussion of short-
pulse effects (including tail dynamics [11], localization suppression
[12,13], and localized solitons formation [14,15]) in nonlinear
disordered systems, see the introduction to my previous paper
[16] and references therein. Here we restrict ourselves to referring
only to a few recent advances reported in the literature. Among
them are the observation of the reciprocity breaking effect in
nonlinear random medium [17], the parametric amplification of
light localization in the random medium with quadratic non-
linearity [18], self-trapping of light in nonlinear waveguide array
with coupling disorder [19], nonreciprocal localization in dis-
ordered multilayers with magneto-optical materials [20], wave
packet spreading in 1D and 2D photonic lattices [21], control of
energy transfer in disordered laser resonators [22], etc.

This paper can be viewed as a continuation of the previous
work [16] devoted to propagation and self-trapping of ultrashort
pulses in disordered one-dimensional photonic crystals with in-
stantaneous and relaxing nonlinearities. Here we consider the
collisions of pulses in such structures and search for the possibility
of light trapping which cannot be reached in ordered system with
the same parameters. This trapping is fundamentally different
from the self-trapping effect in the perfect nonlinear photonic
crystals [23] which is destroyed by introduction of disorder. As
previously, we consider the regime of strong disorder and strong
nonlinearity. We have studied earlier the interaction of co- and
counter-propagating pulses in perfect photonic crystals with re-
laxing nonlinearity [24] and in dense two-level media [25–27]. As
far as we know, the influence of disorder on such interaction was
not considered in scientific literature yet. The present study makes
up for this deficiency.

The paper is structured as follows. In Section 2, we give the
main equations and briefly discuss the numerical method and the
parameters adopted. Sections 3 and 4 are dedicated to the analysis
of results obtained for co- and counter-propagating pulses, re-
spectively. The paper is completed with the short Conclusion.

2. Problem statement

Let us consider the one-dimensional photonic crystal, i.e. a
multilayer structure consisting of two different materials –
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alternating layers denoted with letters a and b. Light is assumed to
propagate along the z-axis which is perpendicular to the layers'
interfaces. The results reported here are based on numerical so-
lution of the one-dimensional wave equation
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where E is the electric field strength, n is the medium refractive
index which, generally, is a function light intensity I E 2= | | ,
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Here n z0 ( ) is a linear part of refractive index changing periodically
along the structure. Since we deal with noninstantaneous non-
linearity, the nonlinear contribution nδ must take into account the
relaxation process which, for definiteness, will be described by the
Debye model [28],
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where n2 is the cubic (Kerr) nonlinear coefficient, and tnl is the
relaxation time. For the disordered periodic structure, we assume
the random variations of thicknesses of layers a and b as follows:

d d d 1/2 , 4a b a b, ,
0 ξ= + Δ ( − ) ( )

where da b,
0 are the mean values of thicknesses, dΔ is the amplitude

of disorder, and ξ is the random quantity uniformly distributed in
the range 0, 1[ ].

We solve numerically Eqs. (1)–(4) using the method developed
in the previous publications [23,16]. As previously, we do not
mean any specific materials, since our aim is to study the quali-
tative and general aspects of light interactions with periodic dis-
ordered structures. Therefore, for our calculations, we adopt the
parameters of the model from Ref. [16]: d 0.4a

0 = and d 0.24 mb
0 = μ ,

n 2a
0 = and n 1.5b

0 = . The envelope of the pulse at the input of the
photonic structure is supposed to have the Gaussian shape,
A t A t texp /2 p0

2 2( ) = ( − ), where tp is the pulse duration, and A0 is
the amplitude of the electric field. Further we assume tp¼50 fs
and the central wavelength 1.064 mcλ = μ , so that the carrier fre-
quency lies just outside the band gap of the perfect multilayer [16].
Finally, we restrict ourselves to the structure with nonlinear b
layers only. This is justified, because light concentrates in these
layers when, as in our case, we deal with the high-frequency edge
of the band gap [29]. The strength of nonlinearity
(n I n A 0.012 0 2 0

2= | | ∼ ) is taken to be large enough to strongly in-
fluence the pulse characteristics. This allows to consider com-
paratively short systems, namely N¼50 periods in our calcula-
tions. Construction of such photonic crystals seems to be quite
feasible for modern technology. Though we do not mean any
specific materials, linear layers may be formed by glass, while for
nonlinear layers one can use polymer materials possessing high
nonlinearity and fast relaxation [30]. However, as far as we know,
such photonic crystals possessing relaxing nonlinearity and dis-
order simultaneously were not realized experimentally yet.
Therefore, our study can be considered as a proposal for building
such new optical systems as well.

Thus, we consider the interplay of strong disorder and strong
nonlinearity. Generally, this interplay can be studied on the short
timescale (pulse shape transformation) and at long times (pulse tail
transformation as an evidence for the Anderson localization) as was
done in the previous work [16]. In this paper, we deal with the col-
lisions of pulses in the disordered photonic crystals. Since the behavior
of the tail and the Anderson localization seem to be insensitive to the
number of pulses, we will focus on the shape transformations of the
colliding pulses and, in particular, on the possibility to induce light
trapping by using the collisions of co- and counter-propagating pulses.

3. Co-propagating pulses

First, let us consider the situation of two co-propagating pulses
launched into the structure with some interval one after another.
This interval must be not too large for the pulses to interact effec-
tively with each other and not too small so that we can talk about
separate pulses. In our calculations, we assume the interval of t10 p

between the peaks of the incident pulses. We start with the profiles
of the pulses transmitted through the perfect (ordered) photonic
crystal (Fig. 1). It is seen that the pulses have different peaks even in
the linear case. This means that the interpulse interval is short en-
ough to provide effective energy interchange between them. Per-
haps, in the linear case, some residual radiation of the first pulse
joins the second one, so that its intensity grows. This simple picture
is not applicable for the more complicated nonlinear case. In non-
linear structure, the first pulse is strongly compressed (more intense)
than the second one. Fig. 2 shows the changes in the profiles due to
disorder with d 0.05 mΔ = μ . In the linear case, the averaged trans-
mitted pulses seem to be almost identical, i.e. on average, the dis-
tribution of energy between the pulses is uniform. This uniformity is
broken as a result of nonlinearity introduction: the first pulse tends
to be more powerful than the second one. Now we can add the re-
laxation of nonlinearity and study its influence on the averaged
profiles of the co-propagating pulses (Fig. 3). It is seen that addition
of relaxation to the disordered structure results in further decrease of
the intensity of transmitted pulses.

What is the reason for this decrease? Does it mean simply
strengthening of reflection? The detailed study shows that the
answer is “no”. According to the data shown in Table 1, the average
transmission T̄ (the part of total light energy transmitted through
the structure in the time t100 p and averaged over realizations)
drops due to the relaxation from 0.514 to 0.419 (remind that we
consider the disorder strength d 0.05 mΔ = μ ). At the same time,
the reflection R̄ averaged over realizations grows from 0.478 only
to 0.509. This means that the total average output W̄ (sum of
transmission and reflection) decreases from almost unity to 0.928,
i.e. on average more than 7% of the input energy remains inside the
structure due to the relaxation of nonlinearity. We further ex-
plored how the average output energy depends on the disorder
strength. The resulting curves presented in Fig. 4 show that, as it
would be expected of the disordered media, the transmission
decreases and reflection increases with the growing dΔ . However,
these two processes do not compensate each other, so that the dip
in the curve for the total output energy appears. The minimum of
W̄ occurs at d 0.04 mΔ = μ and amounts to about 0.92.

Fig. 1. The profiles of co-propagating pulses transmitted through the perfect (or-
dered) photonic crystal with and without nonlinearity.
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