
Arrays of Gaussian vortex, Bessel and Airy beams by
computer-generated hologram

Yang Lu a, Bo Jiang a, Shuchao Lü a, Yongqi Liu a, Shasha Li a, Zheng Cao a,b, Xinyuan Qi a,n

a School of Physics, Northwest University, No. 229, Taibai North Road, Xi'an, Shaanxi 710069, China
b National Key Laboratory of Science and Technology on Space Microwave, CAST, Xi'an, Shaanxi 710100, China

a r t i c l e i n f o

Article history:
Received 19 August 2015
Received in revised form
28 October 2015
Accepted 1 November 2015
Available online 12 November 2015

Keywords:
Spatial light modulator
Fractional-Talbot effect
Rayleigh length
Photonic lattice

a b s t r a c t

We generate various kinds of arrays of Gaussian vortex, Bessel and Airy beams, respectively, with digital
phase holograms (DPH) based on the fractional-Talbot effect by using the phase-only spatial light
modulator (SLM). The linear and nonlinear transmissions of these beam arrays in strontium barium
niobate (SBN) crystal are investigated numerically and experimentally. Compared with Gaussian vortex
arrays, Bessel and Airy beam arrays can keep their patterns unchanged in over 20 mm, realizing non-
diffracting transmission. The Fourier spectra (far-field diffraction patterns) of the lattices are also studied.
The experimental results are in good agreement with the numerical simulations.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Optical vortex, Bessel and Airy beams are special light fields,
widely studied and employed in the fields of particle trapping and
sorting [1–4], quantum optics [5], optical communications [6],
optical computation [7], optical fiber applications [8], curved
plasmon channel generation [9,10] and etc. Optical vortex [6]
following the phase singularity along the axis of a beam with
helical phase fronts characterized by θ( )ilexp . Bessel beams, a kind
of non-diffracting light beams, were proposed by Durnin in the
late 1980s [11], which have an infinite number of rings covering an
infinite distance and requiring an infinite amount of power [12].
Recent works have showed that Bessel-like beam patterns can be
delivered along sinusoidal [13] and even self-accelerating along
predesigned trajectories [14]. Airy beams, another type of non-
diffracting beams, have attracted much interest since 2007 due to
the unique properties of self-accelerating and self-healing, when
Siviloglou and et al. firstly reported in the field of optics [15,16].
For the particularity of these special beams, people pay close at-
tention not only to these beams themselves, but also to these
beam arrays. Arrays always have more fascinating characteristics
and more practical applications. There are many ways to generate
beam arrays such as multi-beam interference [17,18], Dammann
grating [19], etc. The application domains of these methods are
limited either because of the simple structures of the beam arrays
or because of the expensive costs of the devices. Talbot effect

[20,21] can also be used to generate periodic and complicated
structures of arrays when a periodic object is illuminated with a
coherent light wave. The light distribution at the fractional-Talbot
distance has also been shown to produce image-like patterns
[2,22]. Compared with the images in the integer Talbot effect, the
recurring patterns will be smaller but with higher light intensity in
the fractional-Talbot effect.

In this paper, we focus on the fractional-Talbot effect to gen-
erate diversified structures of arrays of Gaussian vortex, Bessel and
Airy beams, and study the linear and nonlinear transmissions of
these beam arrays in the SBN crystal numerically and
experimentally.

2. Theoretical analysis

The complex optical field of the beam arrays ( )rU0 can be de-
scribed by a function as follows

( ) = ( ) ⊗ ( ) ( )r r r RU u lattice , 1n0 0

where ⊗ denotes the convolution integral, ( )ru0 is the complex
amplitude of one cell in the array, r is the position vector, and

( )r Rlattice , n defines an array of the two-dimensional (2D) period δ
function with the lattice vector of = +R a an nn 1 1 2 2 (here n1 and n2

are the lattice index, and a1 and a2 are the basis vectors of the
lattice). The functions ( )r Rlattice , n of three different arrays with
rectangular, diamond and hexagon symmetries obey

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optcom

Optics Communications

http://dx.doi.org/10.1016/j.optcom.2015.11.001
0030-4018/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: qixycn@nwu.edu.cn (X. Qi).

Optics Communications 363 (2016) 85–90

www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2015.11.001
http://dx.doi.org/10.1016/j.optcom.2015.11.001
http://dx.doi.org/10.1016/j.optcom.2015.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2015.11.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2015.11.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2015.11.001&domain=pdf
mailto:qixycn@nwu.edu.cn
http://dx.doi.org/10.1016/j.optcom.2015.11.001


⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

=

+ + +

( = )

=

+ + +

( = )

( )

lattice comb
x
a

y
a

lattice comb
x
a

y
a

comb
x
a

y
a

a a

lattice comb
x
a

y
a

comb
x
a

y
a

a a

,

,

1
2

,
1
2

,

1
2

,
1
2

3
3

2

Dia

Hex

Rec
1 2

1 2

1 2

1 2

1 2

1 2

1 2

Based on the fractional-Talbot effect, the phase distribution Φ
of the complex field ( )rU0 is employed as the pure phase mask to
recover ( )rU0 [2]. Φ can be calculated by the convolution of the cell
phase ϕ and the ( )r Rlattice , n . The field pattern ( )rU0 recurs at

β=z z /T , where β is an integer. λ=z d2 /T
2 is the Talbot distance

[21], d is the period of the optical phase grating and λ is the wa-
velength of a light beam.

3. Experimental setup

Experiment confirmation of the above analysis is performed
by using a 532 nm laser beam projected onto a 5�5�10 mm3

SBN crystal. The setup is shown in Fig. 1. The creation of the
arrays consists of six basic steps: (1) after laser expansion by the
lenses L1 and L2, an initial Gaussian beam turns out to be a quasi-
plane wave, launching onto a SLM, then (2) different kinds phase
patterns (DPHs), which are computer calculated by the phase of
the complex light field ( )rU0 , are impressed upon the beam and
corresponding lattice patterns recover at the fractional-Talbot
plane (the black frame), (3) a 4f system (L3 and L4) and a filter are
used to obtain only the first order diffraction pattern of the
DPHs, (4) through changing different positions of the lens L5, the
arrays at different fractional-Talbot distances are imaged onto
the front facet of the SBN crystal, (5) the lens L6 and CCD1 are
used to observe the intensity patterns of beam arrays, and (6) the
lens L7 and CCD2 are needed to monitor the Fourier spectra of
different arrays at the rear focal plane of the lens L6. The red line
in Fig. 1 shows Rayleigh length Lci during which the beam keeps
almost invariant.

4. Numerical simulations and experimental results

4.1. Simple arrays

First, we studied some simple arrays of Gaussian vortex, Bessel
and Airy beams. Typical numerical and experimental results are
shown in Fig. 2. From the left column in Fig. 2, we can see vortex
arrays (topological charge l¼3) arranged in common rectangular
shape. Due to the finite size of a Gaussian vortex beam, it is used as
the cell of the vortex beam array. The cell phase ϕGv is shown in
Fig. 2(a1) upper right, which consists of ϕG (the phase of a Gaus-
sian beam) and ϕv (the phase of a vortex beam),
ϕ ϕ ϕ θ= ⋅ = { [ − ]}i l r Rexp /2Gv v G

2 , here l topological charges, θ the
angular coordinate in the polar coordinate system, r the radial
coordinate in the polar coordinate system, R constant. Analo-
gously, the cell phase of a Bessel beam array follows ϕ ( ) =r mrBes
[23], where η α= ( − )m k1 / 0, η refractive index of a circularly
symmetric glass cone, α exterior-angle, π λ=k 2 /0 wavevector, and r
the radial coordinate in the polar coordinate system [Fig. 2(b1)].
The cell phase of an Airy beam array can be approximated quite
well by [16] [Fig. 2(c1)], ϕ ( = ) ≈ [ ]−x z x iCx, 0 expAi

1/4 3/2 , where C is
a constant, x, z are the transverse and longitudinal coordinates,
respectively.

The pattern on the fractional-Talbot plane, which is
βz /T E36.7 cm (β = 17) away from SLM, is projected by the lens L5

on the input face of the SBN crystal precisely. The arrays are shown
in Fig. 2(a4–c4). The periods of the input arrays of Gaussian vortex
and Bessel are roughly ΛE300 mm, while the Airy arrays' period is
about ΛE450 mm at z¼0 to make sure the side lobes and tail
lobes clear enough (the period of side lobes is around 20 mm). The
simulated and experimental light profiles of three beam arrays in
one period are both plotted in Fig. 2 (a5–c5). Obviously, the results
fit pretty well, exhibiting excellent optical quality of the beam
arrays.

4.2. Linear and nonlinear transmissions

Based on the aforementioned studies, we further investigated
the linear and nonlinear transmissions of beam arrays ( )rUdefect

with a site defect by introducing a δ function in the ( )r Rlattice , n in
homogeneous medium, δ( ) = ( ) ⊗ [ ( ) − ]r r r RU u lattice , Rdefect n0 n .
The recurring patterns on the input facet of the SBN crystal are
shown in Fig. 3(a1–c1). The periods of Gaussian vortex and Bessel
arrays are both about ΛE130 mm, while the Airy array still keeps
ΛE450 mm (at z¼0). Fig. 3(a2–c2) shows the linear output pat-
terns of the arrays propagating 10 mm through the SBN crystal.
Obviously, the cells in the diamond Gaussian vortex array distort
to a certain extent, whereas the cells in the hexagon Bessel beam
array and the rectangular Airy beam array maintain almost un-
changed. This is because these three kinds of cells have different
Rayleigh lengths Lci during the same fractional-Talbot distance.
The recurring image distorts gradually from one fractional-Talbot
plane to maximum extent and then evolves into another recurring
image until the next fractional-Talbot plane [24]. The Rayleigh
length of a Gaussian vortex beam LcV is measured about 3 mm
(shorter than the length of the crystal 10 mm), while the Rayleigh
lengths of Bessel and Airy beams are longer than 20 mm, which
means that they can keep their shapes in the whole crystal. In the
nonlinear case, the biased field applied along the c-axis of the SBN
crystal was 800 V/cm. Under the self-focusing nonlinearity, the
patterns on the output [Fig. 3(a3–c3)] shrink, compared with the
linear output patterns shown in Fig. 3(a2–c2). The sizes and
shapes of the Bessel beam array and the Airy beam array [Fig. 3(b3
and c3)] keep nearly unchanged, compared with the input pat-
terns [Fig. 3(b1 and c1)]. However, the Gaussian vortex array
cannot recover to its input pattern even with the same biased field

Fig. 1. The sketch of the experimental setup. L, Fourier transform lens; P, polarizer;
BS, beam splitter; SLM, spatial light modulator; F, filter; M, mirror; SBN, strontium
barium niobate crystal; c, crystal axis; CCD, charge coupled device; Lci, Rayleigh
length of a beam; black frame, fractional-Talbot plane.
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