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a b s t r a c t

To analyze the electromagnetic wave propagation in a medium the Maxwell equations should be sup-
plemented by constitutive relations. At present the classification of linear constitutive relations is well
established in tensorial-matrix and exterior p-form calculus. Here the constitutive relations are found in
the context of Clifford geometric algebra. For this purpose Cl1,3 algebra that conforms with relativistic 4D
Minkowskian spacetime is used. It is shown that the classification of linear optical phenomena with the
help of constitutive relations in this case comes from the structure of Cl1,3 algebra itself. Concrete ex-
pressions for constitutive relations which follow from this algebra are presented. They can be applied in
calculating the propagation properties of electromagnetic waves in any anisotropic, linear and non-
dissipative medium.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The constitutive relations are needed to connect a pair of va-
cuum fields E, B( ) with a pair of excitation fields D, H( ) in a med-
ium in order to close the system of Maxwell equations. The sim-
plest constitutive relations are D Eε= and H B1μ= − , where ϵ and μ
are the permittivity and permeability. Traditionally the con-
stitutive relations are described at a fixed frequency as a linear
transformation between the mentioned pairs of fields [1–3,8,4]. To
include memory of the medium or transient properties one should
resort to integral formulation with a time-dependent response
function in the integrand of the constitutive relation [5,6]. This
greatly complicates the problem.

The restriction of the problem to frequency domain and, in
addition, to dissipationless linear and unbounded media allows to
formulate constitutive relations for a relatively wide class of
media, including the pre-metric electrodynamics [3,7]. In tensorial
form such formulations are summarized in [2] and exterior p-form
calculus in [3], where it is shown that in the most general case the
constitutive relation is characterized by 36 scalar coefficients.
Dyadic approach to the problem which is frequently met in elec-
trical engineering is summarized in [4,9]. The dyads simplify
tensorial notation and subsequent calculations. However they are
not the objects of a linear (vector) space. Here the situation may be
compared with introduction of classical magnetic field vector B,
which does not belong to basis vectors of linear space of algebra.
The price one pays is that now two kinds of vectors, polar and
axial, having different transformation properties appear. In

geometric algebra (GA) the objects of linear space are vectors,
bivectors (oriented planes), trivectors (oriented volumes) and in
general the multivectors. In GA all linear transformations are
limited only between multivectors. Of course, one can introduce a
linear transformations for B, or more generally between (multi)
dyads at the cost of (unnecessary) complication of mathematics.
However, now new rules appear, for example, one is not allowed
to sum up linear space forming vectors with the axial vectors,
otherwise one will get a monster with strange properties under
reflection. New difficulties may appear when dyads are applied in
differential and integral calculus. Here the grad, div and curl op-
erators expressed through vectorial nabla operator do not possess
the inverses. Whereas in GA, the nabla operator carries the prop-
erties of metric space. As a consequence, the differential GA op-
erator has inverse [10]. Thus, useful solutions may be lost if the GA
nabla is artificially divided into div and curl.

The Clifford or geometric algebra, where the metric of the
spacetime is predetermined, offers a different and more efficient
approach to the solved problem. The main advantage of GA is a
coordinate-free attitude which is reminiscent of classical vectorial
calculus but extended to multidimensional linear spaces with a
given space metric. In GA the objects are multivectors of different
grades that have geometric interpretation and can be simply ma-
nipulated including their transformations between same grade as
well as different grade subspaces. The multivectors of GA satisfy a
number of outermorphisms (or involutions) which automatically
ensure symmetry properties of the spacetime, namely, P and T
transformations of the space and time, and their combination PT
[11]. Of all 64 irreducible Clifford algebras represented by 8-peri-
odicity table [12], in optics and electrodynamics the two are the
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most important, namely, Cl3,0 algebra which describes Euclidean
3D space and Cl1,3 algebra which describes Minkowskian re-
lativistic 4D spacetime. Respectively, the optics related with these
two algebras may be called classical or Galilean, and relativistic or
Minkowskian. There is a number of books of different degrees of
difficulty that explain electromagnetic wave propagation in terms
of GA [13–16]. An accessible introduction to GA and electro-
dynamics for readers who are unfamiliar with this subject can be
found in T. G. Vold’s two articles [17].

The first attempts to construct the constitutive relations in
terms of GA multivectors can be found in [6,18–20]. In [6] the
general restrictions in the time domain are analyzed. In [19] the
constitutive relations for isotropic material are formulated in a
covariant manner. In [18] nonorthogonal frame is used to describe
the permittivity ellipsoid. In [20] an additive form of constitutive
relations is considered where the influence of material is described
by polarization of medium. In this paper we use the multiplicative
form for constitutive relations that connect the primary E, B( ) and
the secondary D, H( ) electromagnetic fields by a linear transfor-
mation of GA.

In this paper, both the Dirac gamma and Pauli sigma notations
[15] will be used to designate the multivectors (for definitions
see Appendix A). This notation incorporates a link between the
Euclidean and Minkowskian spaces, namely, that even subalgebra
of Cl1,3 is isomorphic to Euclidean space algebra Cl3,0 and, there-
fore, a projection of the relativistic multivector onto even sub-
algebra yields measured in experiment quantities.

In the next Section 2, the electromagnetic (EM) field properties
in Cl1,3 algebra are reminded. In Section 3 properties of linear
transformations used in construction of constitutive relations are
briefly discussed. General relativistic constitutive relations in GA
are presented in Section 4. A summary of some of definitions used
in GA and properties of multivectors in Cl1,3 are summarized in
Appendix Appendix A.

2. The EM fields and excitations in Cl1,3

The geometric algebra Cl1,3 is characterized by , , ,( + − − − )
metric. This algebra describes relativistic spacetime mapped by
four orthogonal basis vectors , , ,0 1 2 3γ γ γ γ{ } which are isomorphic to
Dirac matrices. The squares of iγ 's give the metric of the spacetime,

i.e. 10
2γ = and 1i

2γ = − for i 1, 2, 3= . Since in the relativity the
primary EM field F as well as the secondary field G (the latter
according to [3] will be called the excitation) are Cl1,3 algebra bi-
vectors, the constitutive relations make a set of linear GA trans-
formations which connect different combinations of elementary
bivectors.

The primary electromagnetic field F (Faraday bivector) can be
decomposed into six elementary bivectors that represent six or-
iented planes in the Minkowskian 4D space,

F F F , 1= + ( )(−) (+)

E E EF E , 21 1 2 2 3 3σ σ σ≡ = + + ( )(−)

B I B I B IF B . 31 1 2 2 3 3σ σ σ≡ = + + ( )(+)

Plus and minus signs indicate even and odd parts with respect to
spatial inversion indicated by overline, F F=(+) (+) and F F= −(−) (−)

(Appendix A). The bivectors i i 0σ γγ≡ , where 0γ is the time coordi-
nate and iγ are the space coordinates, are time-like (odd with
respect to spatial inversion) the squares of which give

1i i i i i i i
2

0 0 0 0σ γ γγ γ γγ γ γ γγ= = − = − =+ . The bivectors I 1 3 2 2 3σ γ γ γ γ= = − ,
I 2 1 3 3 1σ γ γ γ γ= = − and I 3 2 1 1 2σ γ γ γ γ= = − are space-like (even with
respect to spatial inversion) the square of which simplify to �1.

From all this follows that the squares of electric and magnetic field
components satisfy E 02 > and B 02 < .

The other pair of fields, called the excitations D and H, depends
on material properties and is written in a similar manner,

G G G , 4= + ( )(+) (−)

D D DG D , 51 1 2 2 3 3σ σ σ≡ = + + ( )(+)

H I H I H IG H . 61 1 2 2 3 3σ σ σ≡ = + + ( )(−)

Similarly, the excitations satisfy D 02 > and H 02 < .
It is assumed that the medium is lossless, linear, and un-

bounded, with instantaneous response to external fields. Then the
constitutive relation between the Faraday field F and excitation
field G is determined by operator χ̂ ,

G D H E B F, 7χ χ= + = ^( + ) = ^ ( )

which is a linear bivector-valued function of the bivector argu-
ment. Also, we shall assume that the constitutive relation between
F and G is local. We adopt that the vacuum electromagnetic con-
stants are normalized, 10 0ε μ= = , so that Eq. (7) is dimensionless.
The dimensions of fields in (7) and subsequent equations in SI
system can be recovered referring to the following dimensional
relation between the fields

Y

Y

D E B ,

H E B , 8

0 0

0 0
1

ε

μ

[ ] = [ ][ ] + [ ][ ]

[ ] = [ ][ ] + [ ][ ] ( )−

where Y /0 0 0
1/2ε μ= ( ) is the admittance of the vacuum. The terms

with ε0 and μ0 correspond to usual relations between the fields in
the medium, while the terms with Y0 are called magnetoelectric
components.

The bivector transformation (7) closes the pair of Maxwell
equations, which in Cl1,3 algebra read [15]

J

F 0,

G , 9

∇ ∧ =
∇· = ( )

where J is the 4-current. In this article it is equated to zero. ∇ is
vectorial differential operator t x y z0 1 2 3γ γ γ γ∇ = ∂ − ∂ − ∂ − ∂ , in which
the metric of the Minkowskian space is embodied. The Maxwell
Eqs. (9) are written without reference to any particular frame. In
case of the vacuum they can be reduced to a single equation [15].
However, for a general constitutive relation one has to work with
both coupled equations.

The constitutive relation (7) in GA is equivalent to the tensorial
relation obtained by E.J. Post [2]

G F
1
2

, 10
ij ijkl

klχ= ( )

where χijkl is a constitutive tensor density of rank 4 which satisfies
the following symmetry relations ijkl jikl ijlkχ χ χ= − = − . As shown
in [2], due to spacetime symmetry, out of 256 components of χijkl

there remain only 36 independent ones which for convenience can
be cast into form of 6�6 matrix. In GA formulation no additional
spacetime symmetry considerations are needed. As shown in the
paper [11] the identity, inversion, reversion and Clifford conjuga-
tion operations in GA are isomorphic to group of four, which
consists of identity operation, space P and time T reversals, and the
combination PT. Thus in geometric algebra the symmetry opera-
tions P T PT1, , ,{ } are automatically satisfied. These are called the
fundamental involutions (automorphisms) of GA. Note, that the
operations are isomorphic, but not identical as names imply. Thus,
in GA no additional requirements are needed to find the consti-
tutive relations between fields and excitations.
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