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a b s t r a c t

In this paper we examine the validity of the concept of impulse response employed to characterize the
time response and the signal-to-noise ratio of p-i-n and similar photodetecting devices. We analyze
critically the way in which the formalism of analog linear systems has been extrapolated, by employing
results from macroscopic electromagnetic theory such as the Shockley–Ramo theorem or any equivalent
approach, to the extreme case of a single-photon detection. We argue that the concept of “response to an
optical impulse” is ill-defined in the customary terms it is envisioned in the literature, this is, as an
output current pulse having a certain predictable, calculated temporal shape, in response to the detection
of an optical “Dirac delta” impulse, conceived in turn as the absorption of a single photon.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the ultimate sensitivity of any photo-
detector is determined by the quantum noise of the radiation it-
self. Specifically for a photodiode receiver, this means that the
noise present at the output current of the diode should be an exact
reproduction of the intrinsic noise of the impinging radiation, with
no any other excess noise contributions. Obviously, the current–
voltage amplification at the electronic stage of the receiver should
also be noiseless, consistent with the “ ideal receiver” assumption.
In other words, once all additional (electronic) noise sources have
been removed, the process of noiseless photodetection amounts to
photon-counting through ideally equivalent temporal electron-
counting.

On the other hand, the functional modelling of a photoreceiver
systematically makes use of an essential concept taken from linear
systems theory: the “impulse response of the receiver,” [1] which
is required for the analysis of both signal and noise performance of
any linear, invariant system. For an analog system, the impulse
response is defined as the output time signal when the input is an
instantaneous impulse of unit area, i.e. a Dirac delta, t ,δ ( ) which
contains all frequencies homogeneously, from 0 to ∞. Such an
impulse is unrealizable (and surely unphysical), but its mathe-
matical usefulness makes it convenient to assume its existence, at
least in the approximate form of a physical impulse having a
duration much shorter than any characteristic time of the system.
Thus, in the case of an electrical circuit, one can think of a delta-
like impulse of voltage, for example. In the case of incoherent

optical reception, the input “signal” is the time-varying optical
power P t( ), so the input impulse is to be described mathematically
as P t tδ( ) = ( ).

It should be kept in mind that all signals are inherently analog
in this formalism. Actually, to a great extent, the Dirac delta works
as an ad hoc artifact intended to allow hypothetical point-like
objects (masses, charges, etc.) to “live” in continuous spatial or
temporal domains, which would otherwise be unconceivable; if
space–time is thought continuous, at least differential intervals are
needed to contain a non-null amount of any magnitude, since a
discrete point is, in mathematical terms, a zero measure set, thus
meaningless. Only if one accepts that a space or time point can
accommodate a “Dirac delta” (of charge, say), can the problem be
skipped.

The above considerations lead us to the following point. Con-
sider the optical signal to be a narrow-band modulated optical flux
Q t P t h/ ν¯ ( ) = ( ) ( ) (photons/s), where the overbar denotes statistical
averaging and ν is the central optical frequency. This corresponds
well to the archetypical case of a laser (or even LED) beam
modulated in intensity by a low frequency (baseband, RF, micro-
wave) signal varying like P t( ). Contrary to what is frequently im-
plied in the literature, the “unit” impulse at the input of the de-
tector is not necessarily “one photon”—in spite of the cardinal
number. This confusion, detected in many textbook presentations,
arises surely from the fact that the electromagnetic field, roughly
speaking, happens to be quantized in amplitude, whereas the Dirac
delta formalism was never intended to deal with “quantized
analog” signals—incidentally, a concept which does not exist in
linear systems theory.

As far as the signal part of the signal and noise calculations is
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concerned, the problem can be surmounted easily for two related
reasons. First, the unit amplitude of the Dirac delta is purely
conventional and without consequences in a linear system; ob-
viously, if the impulse A tδ ( ) is employed at the system input, the
system response to the unit impulse will merely be the actual
output divided by A. In other words, it is the temporal condensa-
tion that matters, not the amplitude. Second, in view of the pre-
vious consideration, any sufficiently short optical pulse, yet si-
multaneously intense enough to clear up any concern on signal
level quantization, will be a perfectly valid approximation to the
unit input impulse.

Things change when the focus is put on the noise. Particularly
in the case of the photonic signal noise, the inherent amplitude
quantization cannot be disguised anymore and the solution de-
scribed above is unfeasible. One thus has to confront a frequently
overlooked issue which threatens the typical automatic extension
of the linear system formalism to handle noise of quantum origin.
In Sections 2 and 3 we review, very briefly, the standard theory of
the signal noise as routinely applied to the linear system model of
photoreceiver. The problems carried out by the accepted formal-
ism are discussed in Section 4. Section 5 contains the conclusions.

2. Optical shot noise in the photoreceiver model

Quantum noise is almost synonymous of shot noise as far as a
photoreceiver is concerned. Only two or three simple statistical
concepts are needed to describe the photodetection process in the
simple fashion in which it is usually modelled, and a straightfor-
ward correspondence can be apparently established between the
mathematical route and the physical route. Thus, assuming a co-
herent light source, the random arrival times of the photons are
governed by a Poisson distribution characterized by its average N̄ ,
related in turn to the average rate of the photon flux through
N QT¯ = ¯ , with T being the “photocounting” period. One could an-
ticipate at this point that T will be roughly equal to the inverse of
the bandwidth, which is basically true.

Next, as an optical–electrical transducer, the photodetector
transmutes the photon absorptions into charge carriers—the
mathematical consequence being a mere multiplication of the
actual instantaneous photon flux, Q t t tk kδ( ) = ∑ ( − ), by the
electron charge q to arrive at the same delta train function, but this
time as an electrical current rather than a photon flux:
i t q t tk kδ( ) = ∑ ( − )δ . Certainly, this impossible current is only a
conceptual intermediate step toward the “real” current, which in
general is described by the expression

i t q M h t t ,
1k

k k k∑( ) = ( − )
( )

where hk(t) is the shape of the current pulse generated across the
terminals of the photodiode by the k-th absorbed photon. The
functional form (1) has its grounds on the classical or semiclassical
formalism of photodetection, both of which predict the photo-
current to be generated by a Poisson process at a rate given by the
light intensity (see for example [2]). Expression (1) specifically
describes a filtered Poisson process, the (low-pass) filtering being
due to the finite duration of h tk ( ). In the presence of additional
intensity noise, expression (1) would still be valid, then describing
a doubly stochastic, filtered Poisson process [3]. The prefactor Mk

accounts for the possibility of the detector being an avalanche
photodiode (APD) with average gain M̄ , while the subindex k of hk
reflects the fact that the actual pulse shape may vary due to
several circumstances. For example, even in a p-i-n photodiode,
the shape of current pulse will vary depending on the specific
location within the photodiode where the photon has been
absorbed [4]. Other different situations can also be modelled by

a variable impulse response (see for example [5] and references
therein). Expression (1) is most often oversimplified by ignoring
the random character of hk and writing a fixed h(t), sketched in
Fig. 1, which is then identified with the “impulse response” of the
linear system, its Fourier transform H ω( ) being the photodetector
transfer function.

Considering the specificities of an APD is unnecessary for the
purpose of the present discussion, so we will take M 1k = and focus
on a p-i-n photodiode. The shape of hk(t) is determined by the
geometry and structure of the diode, mainly the width of the in-
trinsic layer. Fig. 1 sketches the form of the current pulse, which—
always within the frame of the described approach—arises from
the transit of one electron–hole pair photogenerated (typically)
somewhere in the space charge region, toward the positive and
negative, respectively, electrodes of the structure. These transit
times determine the ultimate bandwidth of the photodetector.

3. Impulse response and sub-electron charge

The area of any elementary current pulse as described above is
given by

i t dt q h t dt q, 2k∫ ∫( ) = ( ) = ( )−∞

∞

−∞

∞

which manifests the transfer of one electron charge during the
duration of the pulse, or, expressed more accurately, the passage of
a total charge q across an imaginary plane located at any point
along the electrical circuit. Thus, at the end of the “flight time” of
the electron and the hole, assuming that they do not recombine
before being collected at the electrodes, one can safely say that a
total charge of one electron has moved, as a conduction current,
along the whole circuit. However, expression (1) has a very
discomforting feature. If hk(t) is truly a current shape and the
actual pulse duration spreads, say, from t¼0 to t Tp= , one should
be able to observe a fractional charge qf given by

q q h t dt
3f

t

t
k

1

2∫= ( )
( )

during any finite interval t t,1 2[ ], with t t T0 p1 2≤ < ≤ . However
striking this consequence of the formalism may look, seemingly it
has never deserved a remark in any textbook or article, passing
completely unnoticed in the literature to the author's knowledge.

It is necessary to recall the origin of the theory leading to this
somewhat stunning result (3). Essentially, this is the Ramo or

Fig. 1. When applied to a photodetector, the formalism of linear systems seeks to
calculate the “impulse response” as the photocurrent pulse at the output of the
device which corresponds to the detection of just one photon. In the absence of
internal gain, such elementary current pulse is predicted to have the form
i t qh t( ) = ( ), with q being the electronic charge and h(t) the pulse shape, satisfying

h t dt 1∫ ( ) =−∞
∞

.
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