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a b s t r a c t

We mainly study on the effect of decoherence of the multiple photon annihilation-then-creation co-
herent state (MPACCS) in two different channels, i.e., amplitude decay and phase damping, by virtue of
the time-evolution of the Wigner functions (WFs) of such state. Based on deriving the analytical ex-
pression of MPACCS's normalization factor related to the Bell-polynomial, the time-evolution of its WFs
in each channel is derived analytically and discussed numerically. After undergoing the amplitude decay
channel, the partial negativity of WFs diminishes gradually and the WFs have no negative region when
the decay time exceeds a threshold value, while the negativity of WFs in phase damping channel varies
more slowly than that of the amplitude decay. Especially, at long times WF evolves into the case of
vacuum state in amplitude decay channel and a sum of weight WFs of all the Fock states in phase
damping channel.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Currently, various methods of quantum state engineering to
manipulate or generate novel quantum states are based on the
operations of photon addition, photon substraction, or the com-
bination of the two on classical or Gaussian optical fields [1,2].
These resulting states exhibit numerous nonclassical properties
and are often useful for improving loophole-free test of Bell's in-
equality [3], enhancing nonlocality [4], increasing quantum en-
tanglement [5], and improving the performance in quantum tel-
eportation [6]. Historically, Agarwal and Tara [7] first introduced
the photon-added coherent state (PACS) obtained by repeated
application of photon creation operator (a†) on a coherent state
(CS), exhibiting both higher-order squeezing and higher-order
sub-Poissonian character [8]. Nha's group had recently presented
the coherent superposition of photon subtraction and addition [9],
ta ra+ †, as well as other coherent superpositions of second-order
operations [10], ta ra2 2+ † , for quantum state engineering. Parti-
cularly, they performed the coherent superposition on two-mode
squeezed vacuum for enhancing quantum entanglement or non-

Gaussian entanglement distillation [11,12]. In addition, Parigi et al.
simply implemented the coherent combinations of annihilation-
then-creation a a† (AC) and creation-then-annihilation aa† (CA) on
a thermal state and proved the noncommutativity of the creation
and annihilation operators [13]. Fiurášek [14] later proposed a
scheme for the approximate probabilistic realization of an arbi-
trary operation that can be expressed as a function of photon
number operator a a† . Lee's group [15] investigated the properties
of multiple photon annihilation-then-creation coherent state
(MPACCS) by operating a a m( )† and aa m( )† on CS and thermal state,
respectively. Very recently, our group also repeatedly applied a a†

and aa† on the thermal state [16] and squeezed vacuum state [17]
and compared their nonclassical and non-Gaussian properties.

On the other hand, when the nonclassical optical fields pro-
pagate in the medium, they inevitably interact with their sur-
rounding environment, which causes the dissipation or dephasing
[18]. As well known, the dissipation or dephasing will deteriorate
the degree of nonclassicality of the optical fields [19]. Thus, the
investigations on nonclassical optical fields in different models of
decoherence have inspired broad interest. For example, the de-
coherence of the photon-subtracted squeezed vacuum was in-
vestigated theoretically in two different decoherent channels
(amplitude decay and phase damping) by Biswas and Agarwal [20]
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and Meng et al. [21]. They indicated that the Wigner function (WF)
loses its non-Gaussian nature and becomes Gaussian due to am-
plitude decay but remains nonclassical in the phase damping case.
Later, the decoherence of such state in a thermal channel had been
discussed by Hu and Fan [22], and they found that when the decay
time exceeded a threshold value, this state completely lost its
nonclassicality since the WF was transited from partial negative to
fully positive definite in phase space. However, to our knowledge,
few studies in the literature focus on the effect of decoherence for
MPACCS. The main reasons are that MPACCS's normalization
constant cannot be analytically derived yet, which is the key to
analyze its nonclassical properties and decoherence, and the ex-
plicit expressions with time evolution in the presence of deco-
herence have not been previously presented due to the compli-
cated calculations involved.

The aim of the present work is to study the effect of deco-
herence on MPACCS in two different channels, i.e., amplitude de-
cay and phase damping, with the help of the time-evolution of the
WFs of such state. Because the non-positive WF is regarded as a
clear signature of the highly nonclassical character of the optical
fields [23,24]. In the following section, we first try to derive the
analytical expression of MPACCS's normalization factor, which is
just related to the Bell-polynomial. From its Q-parameter, MPACCS
exhibits stronger sub-Poissonian behavior numerically. In Section
3, we investigate howMPACCS evolves in amplitude decay channel
by evaluating its Wigner distribution function. After deriving the
analytical expression of Wigner operator in amplitude decay
channel, we discuss the MPACCS's WF with time evolution both
analytically and numerically. The results show that the partial
negativity of WFs diminishes gradually with time and the WFs
have no negative region when tκ exceeds a threshold value. In
Section 4, we mainly give the analytical expression of the WF's
evolution of MPACCS passing through the phase damping channel.
It is found that the negativity of WFs in phase damping channel
varies more slowly with time than that of the amplitude decay. At
long times, WF evolves into the case of vacuum state in the former
channel and a sum of weight WFs of all the Fock states in the latter
channel. The results are summarized in the last section.

2. The MPACCS and its normalization

Theoretically, MPACCS is obtained by repeatedly operating a a†

on the coherent state aexp /2 02( )α α α| 〉 = −| | + | 〉† , i.e.,
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where NAC
m denotes the normalization constant to be determined,

m may be any non-negative integer, a† and a are the creation and
annihilation operation, respectively, obeying a a, 1[ ] =† . Using the
completeness relation of Fock state n n 1n 0∑ | 〉〈 | ==

∞ with

n a n/ 0n| 〉 = ( ! )| 〉† and the normally ordered expansion of the va-
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which indicates that mα| 〉 is actually equivalent to a superposition
of PACS.

Employing the normalization condition and using Eq. (2) as
well as a α α α| 〉 = | 〉, we have
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where H ,m n, ζ ξ( ) is two-variable Hermite polynomial, the normal-
ization constant Nm is also calculated by
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As a result of Eqs. (4) and (7), we have
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The expansion equation (3) also leads to the following result for
the scalar products:
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Similarly, it is obtained from Eqs. (1) and (2) that
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Further, comparing Eq. (9) with Eq. (10) yields
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which seems a new identity. Especially, when m¼n and α β= , Eq.
(11) turns into Eq. (8).

Since the normalization factor of MPACCS is related to the Bell-
polynomial, it is very convenient for further analytically studying
its nonclassical properties and decoherence effects below. For in-
stance, according to n a aTr( )ρ〈 〉 = † , from Eqs. (2) and (4) we easily

have mean photon number of MPACCS
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