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a b s t r a c t

In this paper, the analytical vector Laguerre–Gaussian (LG) solutions are obtained in strongly nonlocal
nonlinear media by variational approach. The comparisons of analytical solutions with numerical results
show that the analytical vector LG solutions are in good agreement with the numerical simulations.
Furthermore, we numerically proved that the completely stationary vector LG soliton, scalar LG soliton
and even (odd) LG soliton can be obtained only in strong nonlocal media. For the general and weakly
nonlocal cases, the single LG beam breaks up and the single even LG beam expands during propagation,
only the LG beam pairs can reduce to a quasistable soliton due to the stabilizing mutual attraction be-
tween its components.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In 1997, Snyder and Mitchell presented the Snyder–Mitchell
model and found the Gaussian-shaped soliton called “accessible
soliton” [1]. Their work raised the upsurge in the research of the
nonlocal spatial optical solitons. Such as, Krolikowski et al. ob-
tained a sech-shaped soliton in weakly nonlocal media [2]. Guo
proved that the spatial optical soliton in strongly nonlocal medium
has large phase shift [3]. Wang found that there is a large phase
difference between the two orthogonally polarized beams which
propagate in the strong nonlocal media with anisotropy [4,5].
Furthermore, the interactions of Gaussian-shaped optical beams in
strong and sub-strong nonlocal media were investigated [6,7].

In recent years, the high-order optical solitons have attracted
numerous attention. For instance, Hutsebaut et al. observed stable
high-order soliton in experiment in nematic liquid crystal [8].
Shen studied the instability suppression of vector-necklace-ring
soliton clusters in different nonlocal media [9]. Deng discussed the
propagation of Ince–Gaussian (IG) beams [10] and elegant IG
beams [11] in strongly nonlocal nonlinear media. In addition,
Hermite–Gaussian (HG) soliton [12], LG soliton [13], Hermite–La-
guerre–Gaussian (HLG) soliton [14] and the interaction of LG so-
litons [15] in strong nonlocal media also have been investigated.
However, to the best of our knowledge, the propagation of non-
local LG vector soliton, which consisted of two incoherently LG

beams [16–18], has not been studied. In addition, Desyatnikov
found that the necklace-ring vector solitons can quasi-stably
propagate in the saturable nonlinear media for the vector inter-
actions [19]. It is worth mention that vector soliton includes
temporal and spatial vector soliton. Such as Rand experimentally
observe the propagation and collision of temporal vector soliton in
a linearly birefringent optical fiber [20], Zhang studied Dissipative
temporal vector solitons in a dispersion managed cavity fiber laser
with net positive cavity dispersion [21]. This paper will study the
strong nonlocal optical vector LG soliton by variational approach
and numerical simulation. Furthermore, we also study the pro-
pagation of LG beam pairs, single LG beam and even (odd) LG
beam in nonlocal media with different nonlocalities.

2. Physical model and variational approach

In cylindrical coordinates, the propagation of two mutually
incoherent optical beams in nonlocal nonlinear media is governed
as the following coupled nonlocal nonlinear Schrodinger equations
(NNLSE) [3,9,16–18]:
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where ψj (j¼1, 2) represent the paraxial optical beams, μ¼1/2k,
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ρkη, k is the wave number in the media without nonlinearity, η is
the material constant.

The Lagrange density equation, which corresponding to Eq. (1),
can be written as follows:
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For the strong nonlocal case, the characteristic length of the
media is ten times larger than the beam width, therefore the re-
sponse function can be expanded twice and reduced as follow
[3,15]:
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Inserting the trial function into Eq. (2) and integrating the La-
grange density, we obtain the average Lagrange
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Here the orthonormality of Laguerre polynomials had been
used
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By using the variational approach, we can obtain a series of
equations as follow:
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Where Pj0 (j¼1, 2) are the initial powers, aj0 are the initial beam
widths and Aj0 are the initial amplitudes. By combining Eqs. (8b)
and (8d), the evolution equations of the beam widths can be
obtained

a

z a
a P

d
d

4
2

9a

2
1

2

2

1
3 1 0

μ μ ργ= −
( )

a

z a
a P

d
d

4
2

9b

2
2

2

2

2
3 2 0

μ μ ργ= −
( )

where P0¼P10þP20 is the total incident power. It is obvious that
the evolution laws of such an LG beam pairs depend on the total
initial power. Assuming d2a1/dz12|z¼0¼0, then the critical power
of ψ1 can be obtained by (9a)
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Namely, when P0¼P10þP20¼Pc1, the ψ1 will keep its initial
beam width unchanged during propagation. In the same way,
setting d2a2/dz22|z¼0¼0, we can obtain the critical power of ψ2 by
(9b)
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When P0¼P10þP20¼Pc2, the ψ2 will preserve its width as it travels
in the straight path along the z axis. Furthermore, assuming that
the total initial power is equal to the two critical powers, i.e., P0¼
P10þP20¼Pc1¼Pc2, the two LG beams both propagate stably in
strong nonlocal media and the stable vector LG soliton can be
formed. Furthermore, for Pc1¼Pc2, we can obtain a10¼ a20.
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where wj stand for the normalized beam widths, Z¼z/ka102 is the
normalized propagation distance. Then the Eq. (9) can be normal-
ized as follow:
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By settting wj(0)¼1, dwj/dZ|Z¼0¼0, we can depict the analytical
solution in Fig. 4, and compare the analytical solution with nu-
merical simulation.
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