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a b s t r a c t

We firstly analyze ghost telescope imaging system based on the coherent-mode representation theory of
partially coherent fields. It is shown that the distribution of the eigenvalues of the source's coherent-
mode representation and the decomposition coefficients of the object imaged can affect the quality of
ghost imaging. According to the distribution of the decomposition coefficients, we analyze the most
suitable position of the detectors to obtain good imaging quality. The results are also suitable for in-
hibiting the influence from the defocusing effect.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ghost imaging, also known as correlated imaging or coin-
cidence imaging, is a nonlocal imaging technique which is used to
obtain the information or the diffraction pattern of an object by
using the intensity correlation of two light beams. The first ghost
imaging experiment was implemented by Pittman et al. and
Strekalov et al. with entangled beams [1,2]. Then, a series of the-
oretical and experimental results showed that both classical
thermal sources and quantum entangled beams could be used for
ghost imaging [3–8]. Having remarkable application value is one of
the important reasons why ghost imaging attracted attention from
international researchers over the last decade. Thus how to ef-
fectively improve the imaging quality has become a focus of study.
Recently, a method based on compressive sensing was proposed to
improve the efficiency of correlated imaging and imaging quality
[9–12]. Meanwhile, the high-order ghost imaging has been de-
veloped to improve the visibility [13–16]. In addition, the com-
putational ghost imaging which uses only a single-pixel detector
has potential applications in remote sensing [17–20], and ghost
imaging through atmospheric turbulence has also been studied
[21–24].

Telescope, as an important observation tool, is very useful in
remote observation. The first ghost telescope imaging system was
proposed by Han, and the difference between conventional tele-
scope and ghost telescope was discussed [25]. It is well known
that the general correlation function of intensity fluctuations is

based on a two-dimensional integral representation [7]. However,
it is noted that a one-dimensional summation coherent-mode
representation was proposed to analyze ghost imaging, and the
results showed that this theory is particularly suitable for evalu-
ating the imaging quality. Three kinds of correlated imaging
schemes ( f2 − , f f2− and lensless ghost diffraction imaging
systems) were analyzed under the coherent-mode representation
[26]. As far as we know, ghost telescope imaging system from the
perspective of coherent-mode representation has not been in-
vestigated. In this paper, we analyze the possibility that the co-
herent-mode representation can be used to study ghost telescope
imaging system. The theoretical analysis and numerical results
show that the coherent-mode representation can be applied to
ghost telescope imaging system, and it is very helpful for under-
standing the imaging magnification and analyzing imaging quality
in ghost telescope imaging system. At the same time, one can
choose a suitable position of the detector to inhibit the effect from
the defocusing effect by analyzing the distribution change of the
decomposition coefficients of the object imaged.

2. Theoretical analysis

Fig. 1 presents a simplified scheme for ghost telescope imaging
system. The pseudo-thermal source S is prepared by passing a
laser beam (λ¼532 nm) into a slowly rotating ground glass, then it
is divided into the test path and the reference path by a beam
splitter (BS). In the test path, the beam passes through a signal thin
lens (with the focal length f1) and a double slit then to a single-
pixel detector Dt. The lens is located at a distance f1 from the light
source and the detector is located at a distance z1 from the lens.
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The distance between the detector and the object can be ignored.
In the reference path, a signal thin lens with the focal length f is
located at the distance f from the light source. A CCD camera Dr is
located at the distance z from the lens.

By measuring the correlation function of intensity fluctuations
between two different detectors Dt and Dr, we can retrieve the
information about the object imaged [3],
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order spatial correlation function of the source, h x x,t t1( ) and
h x x,r r2( ) are the impulse response functions for the test path and
the reference path, respectively. Here
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where t(x) is the transmission function of the imaged object.
From the optical coherence theory [27], and the previous re-

sults [26], we know
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β n are the corresponding eigenvalues, ϕn are the eigenfunctions of
the homogeneous Fredholm integral equation,
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c a ab22= + . ss is the source's transverse size, and sg is the
transverse coherence width of the source. Substituting Eqs. (2), (3),
(5) and (6) into Eq. (4), we obtain
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According to Eq. (5) in Ref. [26] and Eq. (10), we have
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from Eq. (11), one can obtain
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where T(x) is the Fourier transform of t(x). Comparing Eq. (9) with
Eq. (13), we can easily find that if n 1, 2n 0β β= ( = …) and
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the correlation function of intensity fluctuations is the same as

t x f
f

2
r 1( ) , i.e., one can obtain an image with magnification f f/ 1

perfectly, which is different from the conclusion in Ref. [26]. In
other words, one can clearly understand the magnification which
is determined by the ratio of two lenses' focal length f f/ 1 from Eqs.
(9) and (13). As we know, the eigenvalues are decreasing in partly
coherent fields 00 1β β( > > ⋯ > ), and this will greatly affect the
imaging quality. According to the above discussion, we know that
the images are determined by the distribution of βn, Fn, and
whether Eq. (14) is satisfied.

3. Results of the simulation

From Ref. [26], one can obtain high quality ghost imaging when
the distribution of eigenvalues is wider than that of decomposition
coefficients. In this section, we attempt to verify whether this
conclusion is satisfied in ghost telescope imaging system.

Here, we choose a double-slit with the slit width 0.2 mm and
the distance between the two slits 0.6 mm as the object imaged.
From the above discussion, we know that the distribution of βn, Fn,
and whether the parameters z, z1, f and f1 obey Eq. (14), will affect
the imaging quality. From Eq. (7), we can know that the dis-
tribution of βn only depends on the parameter q /g sσ σ= . According
to Eqs. (2), (8) and (10), the parameters z1, f1, sg and ss will in-
fluence the distribution of Fn, thus change the imaging quality.

Fig. 1. A simplified scheme for ghost telescope imaging system.
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