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a b s t r a c t

Elliptic Cylindrical Waves (ECW), defined as the product of an angular Mathieu function by its corre-
sponding radial Mathieu function, occur in the solution of scattering problems involving two-dimen-
sional structures with elliptic cross sections. In this paper, we explicitly derive the expansion of ECW,
along a plane surface, in terms of homogeneous and evanescent plane waves, showing the accuracy of
the numerical implementation of the formulas and discussing possible applications of the result.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The plane-wave representation of electromagnetic field, in its
connection to Fourier analysis, is a fundamental tool in dealing
with several aspects of the electromagnetic theory [1,2]. By ex-
pressing complex electromagnetic fields in terms of superpositions
of very simple solutions of Maxwell's equations, it is capable of
delivering a great simplification in the analytical treatment of
several complex radiation, propagation and diffraction problems.
In particular, the aforementioned technique may be used to ex-
press the electromagnetic field radiated by localized sources or
scattered by localized obstacles with simple shapes, expressing the
typical solution of Helmholtz equation in orthogonal curvilinear
coordinates in terms of natural solutions of Maxwell's equations in
Cartesian coordinates [2,3]. This approach has proved to be ex-
tremely fruitful in dealing with the reflection of complex electro-
magnetic fields by plane surfaces, e.g., when the fields are ex-
panded in terms of cylindrical functions in circular coordinates [4–
8]. Since the reflection and transmission properties of surfaces are
known, or at least easily expressible, just for incident plane waves,
solutions of diffraction problems in the presence of a generally
reflecting plane surface require an integral expansion of the dif-
fracted field along the plane surface in terms of homogeneous and

evanescent plane waves, for which the reflection behavior may be
characterized by means of the Fresnel coefficients [9–12]. The
solution of two-dimensional scattering problems in elliptic co-
ordinates is pursued by expanding the diffracted field by means of
Elliptic Cylindrical Waves (ECW), defined as the product of an
angular Mathieu function by its corresponding radial Mathieu
function. Integral plane-wave representations of ECW as a contour
integral in the complex plane may be found in many fundamental
works [2,13,14] but, to the best of our knowledge, none of the
available forms is suitable for the straightforward application of
the aforementioned analytical procedure.

In this paper we show the explicit derivation of the plane-wave
spectrum of ECW, whose final analytical form is directly applicable
to the study of the reflection of ECW by a planar discontinuity
between propagation media. Such result is significant in many
fields of applied optics, since it constitutes a basilar step in
the construction of full-wave solutions of scattering problems re-
garding cylindrical diffracting structures with elliptic cross
sections.

The paper is organized as follows: in Section 2 we resume some
fundamental concepts about ECW, we define the notations used in
this paper and we show explicit analytical derivation of the plane-
wave expansion. In Section 3 we present numerical results,
pointing out the accuracy and reliability of the proposed plane-
wave spectrum representation. In Section 4 we discuss relevant
applications of the proposed expansion. Finally, conclusions are
given in Section 5, where further developments are outlined too.
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2. Plane wave expansion of ECW

2.1. Elliptic Cylindrical Waves

With reference to the notation used in [3,15], we will denote
with symbols S v q( , )pn

the angular Mathieu functions (AMF), and

with symbols J u q( , )pn
, N u q( , )pn

the radial Mathieu functions

(RMF) of the first and second kind, respectively: u v( , ) being the
elliptic cylindrical coordinates, q being the elliptic parameter, the
index p e o{ , }= and index n ∈ denoting functions of even or odd
type p and integer order n, respectively. With symbols H u q( , )p n

m( ) ,

m {1, 2}= , we will denote radial Mathieu functions of the third
kind, analogous to the Hankel functions in circular coordinates,
defined as

H u q J u q iN u q( , ) ( , ) ( , ), (1)p n pn pn
(1) = +

H u q J u q iN u q( , ) ( , ) ( , ). (2)p n pn pn
(2) = −

By means of such notation, the basic solutions of the Helmholtz
equation in elliptic coordinates are of the form

H u q S v q( , ) ( , );p n
m

pn
( ) ·

the elliptic parameter q is connected to the wavenumber k in the
Helmholtz equation since q k /42 2ρ= , k 2 /π λ= , λ being the wave-
length, d/2ρ = , d being the interfocal distance of the reference
ellipses. For the sake of simplicity and readability in the rest of this
paper, we will refer to these basic solutions as Elliptic Cylindrical
Waves (ECW), denoted by symbols u v qECW ( , , )p n

m( ) , to focus on the
analogies with the results of plane-wave expansion of circular
cylindrical waves in [4]. We point out that the two different forms
of Mathieu functions of the third kind in (1) and (2), also called
Mathieu–Hankel functions of the first and second kind,

respectively, give rise to corresponding ECW representing out-
going (first kind, ECWp n

(1)) and ingoing (second kind, ECWp n
(2)) fields

when a time factor i texp( )ω− is assumed. In this paper, for
relevant applications to diffraction theory, we will focus on
ECWp n

(1) functions corresponding to Mathieu–Hankel functions of
the first kind:

u v q H u q S v qECW ( , , ) ( , ) ( , ); (3)p n p n pn
(1) (1)= ·

for this reason, in the following sections, the superscript “(1)” will
be dropped.

2.2. Integral representation of ECW

The geometric layout of the problem is shown in Fig. 1, where
the axes and coordinates of the Cartesian reference frame are vi-
sualized together with the corresponding elliptic coordinates. We
will refer to dimensionless Cartesian coordinates kxξ = and kyη = .
Our aim is to express the ECW field distribution (3), across a plane

00η η= > , as a superposition of plane waves, following an analy-
tical approach similar to the one used in [4]. We start from the
integral representation in [14], reported as “Integral Representa-
tion with Elementary Kernel” in [16,17] at Section 28.28.7

ihw t h dt

i h M z h

1
exp(2 )me ( , )

exp(
2

)me ( , ) ( , ), (4)

2

2 (3)

∫π
ν π α=

ν

ν ν

where

� variable w is defined as w z t z tcosh cos cos sinh sin sinα α= + ,
� w, z, α, t represent complex variables,
� h q2 = ,
� ν represents a complex index,
� the complex variable t must follow an integration path

Fig. 1. Geometry of the problem and reference frame; ξ and η are Cartesian dimensionless coordinates, defined as kxξ = and kyη = , where k 2 /π λ= , λ being the wavelength;
u v( , ) are elliptic coordinates; F1 and F2 are the foci of the elliptic reference frame, F F /21 2ρ = .
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