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a b s t r a c t

We use a right unitary decomposition to study an ultracold two-level atom interacting with a quantum
field. We show that such a right unitary approach simplifies the numerical evolution for arbitrary po-
sition-dependent atom–field couplings. In particular, we provide a closed form, analytic time evolution
operator for atom–field couplings with quadratic dependence on the position of the atom; e.g. a two-
level atom near an extremum of a cavity field mode amplitude. Our approach allows us to show that the
center of mass wave function may be squeezed by choosing a proper atom–field initial state.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Jaynes–Cummings (JC) model describing the interaction of
a two-level atom with a quantized field mode [1] is a solvable
working model of the micromaser [2]. In this model, the center of
mass velocity of the two-level atom is slow enough to allow
controlled atom by atom interaction with the field but fast enough
to be described by classical physics; e.g. thermal Rydberg atoms
passing through a superconducting cavity showing Rabi oscilla-
tions [3]. In the limit case of a two-level atom so slow that its
center of mass motion needs to be quantized, the system is de-
scribed by the following Hamiltonian [4]:
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where the quantized motion of the two-level atom with unitary
mass has been taken in the ẑ-direction with associated canonical
momentum p̂, the quantum field is described by the annihilation

(creation) operators â (â
†
) and the frequencyω, and the inner state

of the two-level atom by the Pauli matrices jσ̂ with j z, ,= + − and
the transition frequency ωq. Two regimes of interest can be
identified for this model, depending on the ratio between the
atomic kinetic energy and the field–atom interaction energy [5]:
the intermediate regime, where the mean atomic kinetic energy is
of the order of the mean field–atom interaction energy, and the
mazer regime, where the kinetic energy is smaller. Amplification
via z-motion induced emission of radiation occurs in the latter and
gives origin to the mazer name [5–8]. This model is of interest as

cavity quantum electrodynamics (cavity-QED) experiments in
these two regimes appear feasible with microwave and optical
quantum fields [7,9,10]. Also, it is feasible to control or switch off
spin interactions of ultracold atoms trapped in optical lattices [11],
as well as to address individual sites of such lattices [12,13] at the
moment and, in the near future, it may be possible to couple an
individual site to a quantum field as cavity-QED has been demon-
strated with Bose–Einstein condensates [14,15].

In the theoretical side of the problem, analytic solutions are
known for electromagnetic modes described by sinusoidal and
mesa functions [5] and sech2 function [7]. Also, an adiabatic ap-
proximation has been proposed by sinusoidal and Gaussian modes
[16]. Here, we introduce a right unitary approach to the problem
and provide an analytic solution for a quadratic mode. A quadratic
mode may be related to an ultracold two-level atom approaching
the maximum of a cavity field in an oblique path or trapped in a
sinusoidal optical lattice. In the following section, we introduce
the right unitary decomposition of the model Hamiltonian for a
general quantum field and construct its time evolution operator.
Then, we study the resonant case for quadratic couplings and
provide a closed form analytic time evolution operator for the
system. At this point, we show that an adequate initial state pro-
vides us with a squeezed wave function for the center of mass
motion of the atom. Finally, we study the interaction of an ultra-
cold excited atom with number and coherent states of the quan-
tum field.

2. Right unitary decomposition

By moving into the frame defined by the excitation number,
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, rotating at frequency ω, we obtain an interaction pic-

ture Hamiltonian,
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where the parameter qδ ω ω= − is the detuning between the two-
level atom and field frequencies. We can follow a right unitary
approach [17,18] to decompose this Hamiltonian into the follow-
ing product:
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where we used a rotation of /4π radians around the yσ̂ operator,
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The latter is right unitary, TT^^ =
†

and T T^ ^ ≠
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, due to the properties
of the London exponential of the phase [19,20], also known as
Susskind–Glogower [21] operators,
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that yield, in the Fock or number state basis,

VV , (8)^ ^ =
†

V V 0 0 . (9)^ ^ = − | 〉〈 |
†

The new auxiliary Hamiltonian is given by
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Typically, a right unitary transformation may act as unitary in just
a sector of the corresponding Hilbert space, this is a well known
problem in phase operators [22,23]. Here, in order to calculate the

evolution operator, U t e( )I
iH tI^ = − ^

, it is straightforward to compute
each and every term of the corresponding power series to obtain
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[18]. Thus, the evolution operator of
the system is given by the following expression:
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In other words, the right unitary operators for this Hamiltonian
behave like unitary operators in this particular ordering.

In summary, our right-unitary decomposition allows us to
construct the time evolution for any given coupling potential for
which Eq. (10) is solvable but this does not mean that it is
straightforward to interpret the results. In the literature, mazer
dynamics for sinusoidal and mesa function [5] and sech2 [7] are
well known. In the following, we will use our approach to solve
the quadratic potential mazer and show that it is straightforward
to cast the center of mass motion states as squeezed states in this
particular case. Furthermore, it seems that a specific operator ap-
proach has to be constructed for each and every potential of the

form zj. Thus, the construction of an analytic closed form evolution
operator for any given coupling function, g z( )^ , escapes our efforts
at the moment.

3. Time evolution for a quadratic coupling

Here, we will solve the problem for quadratic couplings
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In this case, we can write the auxiliary Hamiltonian in the fol-
lowing form:
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where the new auxiliary Hamiltonian
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+ , and inverted,

H p z( )/2
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− , harmonic oscillators, which are equivalent to
free propagation and degenerate parametric down-conversion, in
that order, or equivalently,
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Here we defined a frequency in terms of the number operator of

the field, n a a^ = ^ ^†
,
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also, we used a boson representation for the atomic center of mass
motion
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and the action of the squeeze operators,
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where the operator ξ̂ acts over the cavity field mode, over the
position and momentum operators yield
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Note that each and every Fock state of the field, k f| 〉 , defines a

bipartite center of mass-field mode, { }j kCM f| 〉 | 〉 with j 0, 1, 2,= …,

and auxiliary frequency k k( )ω λ= | | .
The time evolution operator of such a model is given by
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