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a b s t r a c t

The expressions for the correlation of intensity fluctuations in the far-zone that occurs in stochastic
electromagnetic beams scattered by a random medium are derived within the validity of the first-order
Born approximation. Some numerical results are presented to illustrate the influences of different source
parameters and scatterer parameters on the normalized correlation of intensity fluctuations of the far-
zone scattered field.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Considering the potential applications in diverse fields, such as
remote sensing, biological imaging, target detection and so on,
light scattering is always a subject of pretty importance. The direct
problem of predicting the statistics properties of the scattered field
has been broadly studied for various types of incident waves and
the scatterers ([1], Chap. 6), [2–8], where the incident waves may
be deterministic or random nature and the scatterers may be
continuous media or particle collections. Besides, the inverse
scattering problem has also been massively investigated to re-
construct the media properties due to the information carried in
scattered light parameters [9–11]. However, to the best of our
knowledge, the researches referred above are almost restricted to
the second-order scattered field.

On the other hand, it has found that the four-order correlation
of the scattered field, i.e., the Hanbury Brown-Twiss effect, which
was firstly introduced to determine the angular diameter of radio
stars by analyzing their correlation of intensity fluctuations
[12,13], could also contain information about the scattering media,
and it has proved the correlation depends on spatial Fourier
transforms of both the intensity and degree of spatial correlation
of scattering potentials of the media when a monochromatic plane
wave is scattered by a quasi-homogeneous random media [14].
Shortly afterwards, the investigations have been generalized to the

case of an electromagnetic plane wave [15] and of a random field
governed by Gaussian statistics [16]. Besides, Kuebel et al. [17]
have derived two four-order reciprocity relations to be used to
reconstruct the scattering potential of the medium, which requires
relatively simple intensity correlation experiments.

In the present paper we continue to extend the ones in [14] to
the case of a stochastic electromagnetic beam and use the so-
called electromagnetic Gaussian Schell-model sources as an ex-
ample to study the Hanbury Brown-Twiss effect occurring in sto-
chastic electromagnetic beams scattered by a random medium.
The analytical expressions for the far-zone correlation of intensity
fluctuations have been derived and some analyses have been given
to illustrate our results.

2. Correlation of intensity fluctuations of partially coherent
electromagnetic Gaussian fields

We assume E(r, )ω is a stochastic electromagnetic field in the
space-frequency domain at a point r, which oscillates at angular
frequency ω. Let us represent E (r, )r ω , E (r, )ωθ and E (r, )ωφ be the
three mutually orthogonal components of the electric field in the
spherical coordinate system and thus the intensity of the field at a
point r at frequency ω may be given as

I E E E(r, ) (r, ) (r, ) (r, ) . (1)r
2 2 2ω ω ω ω= + +θ φ

The statistical properties of such a field at a pair of points
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specified by the position vectors r1 and r2 may be characterized by

the cross-spectral density matrix W(r , r , )1 2 ω
↔

with elements ([1],
Section 9.1)

W E E r(r , r , ) (r , ) (r , ) , ( , , , ), (2)1 2 1 2ω ω ω α β θ φ= =αβ α β*

where the angular brackets denote the ensemble average and the
asterisk denotes the complex conjugate. From this definition we
can express the average intensity as

I (r, ) Tr W(r,r, ), (3)ω ω
↔

=

where Tr denotes the trace. If we introduce the intensity fluctua-
tions at a point r as

I I I(r, ) (r, ) (r, ) , (4)Δ ω ω ω= −

then the correlation of intensity fluctuations at two points r1 and r2
can be described as

C I I(r , r , ) (r , ) (r , ) . (5)1 2 1 2ω Δ ω Δ ω=

Next if we assume the intensity fluctuations obey Gaussian
statistics, then by the use of the moment theorem for a Gaussian
random process, the correlation of intensity fluctuations can be
expressed with the components of the cross-spectral density
matrix as ([18], Chap. 8)

C W r(r , r , ) (r , r , ) , ( , , , ),
(6)

1 2
,

1 2
2∑ω ω α β θ φ= =

α β
αβ

and the normalized correlation of intensity fluctuations at two
points r1 and r2 is then defined as

C
C

I I
(r , r , )

(r , r , )
(r , ) (r , )

.
(7)

n 1 2
1 2

1 2
ω

ω
ω ω

=

3. Review of weak scattering theory

Suppose now that a stochastic electromagnetic field E (r,s , )i
0 ω

is incident upon a linear random medium, which occupies a finite
domain V . If the field is radiated close to the z direction into the
positive half-space z 0> , the two mutually orthogonal Cartesian
components of the field E (r,s , )x

i
0 ω and E (r,s , )y

i
0 ω , perpendicular to

the beam axis, may be expressed by the angular spectrum re-
presentation of plane waves as ([18], Section 3.2)

E a ik d s x y(r, s , ) (s , )exp( s r) , ( , ),
(8)

i
0

s 1
0 0

2
0

0
2∫ω ω α= ⋅ =α α

≤
⊥ ⊥

⊥

where a (s , )0 ωα ⊥ is the amplitude of a plane wave, which propa-
gates in a direction specified by a unit vector

( )p q p qs , , 10
2 2= − − . Besides, p qs ( , )0 =⊥ is a real two-di-

mensional vector, k 2 /π λ= is the wave number, λ is the wavelength
and the homogeneous plane waves have been considered only.

On taking the average over the ensemble of the field, the sta-
tistical properties of the incident field may be characterized by the

cross-spectral density matrix W (r , r , s , s , )
i

1 2 01 02 ω
↔

with components
([1], Section 9.1)

W

E E x y

(r , r , s , s , )

(r , s , ) (r , s , ) , ( , , ). (9)

i

i i

1 2 01 02

1 01 2 02

ω

ω ω α β= =

αβ

α β*

On substituting Eq. (8) into Eq. (9), the elements of the cross-
spectral density matrix of the incident field can be gotten as

W

A

ik d s d s x y

(r , r , s , s , )

(s , s , )

exp[ (s r s r )] , ( , , ), (10)

i

01 02

01 02

1 2 01 02

s 1 s 1

1 2
2

01
2

02

01 02
2 2∫ ∫

ω

ω

α β

=

× − ⋅ − ⋅ =

αβ

αβ
≤ ≤

⊥ ⊥

⊥ ⊥

⊥ ⊥

where A a a(s , s , ) (s , ) (s , )01 02 01 02ω ω ω=αβ α β⊥ ⊥ * ⊥ ⊥ is the so-called
angular correlation function between components of two plane
wave modes of the stochastic electromagnetic field and may be
gained by ([18], Section 5.6.3)

⎛
⎝⎜

⎞
⎠⎟A

k
W

ik d d x y

(s , s , )
2

( , , )

exp[ (s s )] , ( , , ), (11)

01 02

4
0

1 2

02 2 01 1
2

1
2

2

∫ ∫ω
π

ω

ρ ρ α β

ρ′ ρ′

ρ′ ρ′

=

× − ⋅ − ⋅ ′ ′ =

αβ αβ⊥ ⊥

⊥ ⊥

where x y( , )1 1 1ρ′ = ′ ′ , x y( , )2 2 2ρ′ = ′ ′ are two two-dimensional posi-
tion vectors andW ( , , )0

1 2 ωρ′ ρ′αβ is the element of the cross-spectral
density matrix of the stochastic electromagnetic field in the source
plane.

Let us assume that F (r , )ω′ is the scattering potential of the
medium and suppose now that the weak scattering process is
considered within the validity of the first-order Born approxima-
tion ([19], Chap. 13). In this case, the scattered field at an ob-
servation point rr s(s 1)2= = can be given by [20]

⎡
⎣⎢

⎤
⎦⎥r F G r d rE ( s, ) s s (r , )E (r , s , ) ( s, r , ) ,

(12)
s

V
i

0
3∫ω ω ω ω′ ′ ′= − × × ′

where G r( s, r , )ω′ is the outgoing free-space Green's function and
may be approximated in the far-zone as

G r
ikr

r
ik( s, r , )

exp( )
exp( s r ). (13)ω′ ′= − ⋅

From Eq. (12) it is obvious that rs E ( s, ) 0s ω⋅ = and in this si-
tuation, the far-zone scattered field is orthogonal to s, i.e.,
E r( s, ) 0r

s ω = . That is to say, if we express such a transverse field in
terms of the spherical polar coordinate system rather than in
terms of the Cartesian coordinate system, it only has two non-zero
components. So for the sake of simplicity, we consider the scat-
tered field in the spherical polar coordinate system and the two
non-zero components of the scattered field can be gotten by the
following expressions [21]

⎡⎣ ⎤⎦

E r F G r

E E d r

( s, ) (r , ) ( s, r , )

cos cos (r , s , ) cos sin (r , s , ) , (14a)

s
V

x
i

y
i

0 0
3

∫ω ω ω

θ φ ω θ φ ω

′ ′

′ ′

=

× + ′

θ

⎡⎣ ⎤⎦

E r F G r

E E d r

( s, ) (r , ) ( s, r , )

sin (r , s , ) cos (r , s , ) , (14b)

s
V

x
i

y
i

0 0
3

∫ω ω ω

φ ω φ ω

′ ′

′ ′

=

− + ′

φ

where sin sin coss (sin cos , , )θ φ θ φ θ= .
On substituting from Eqs. (14a) and (14b) into Eq. (2), one finds

that all the four elements of the cross-spectral density matrix

r rW ( s , s , )
s

1 2 ω
↔

of the far-zone scattered field scattered by a random
medium may be expressed as [22]

W r r

r
F r r

F r r

F r r

F r r

( s , s , )
1

[ cos cos cos cos ( s , s , )

cos cos cos sin ( s , s , )

cos sin cos cos ( s , s , )

cos sin cos sin ( s , s , )], (15a)

s

xx

xy

yx

yy

1 2

2 1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

ω

θ φ θ φ ω

θ φ θ φ ω

θ φ θ φ ω

θ φ θ φ ω

=

+

+

+

θθ
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