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a b s t r a c t

The enhanced localized reflectivity at a plane where the refractive index derivatives are discontinuous is
increased using a periodic triangular stack. This optical system is studied using three different methods:
a slowly varying refractive index approximate solution, numerical solutions to the nonlinear amplitude
equation and the exact analytical solution using a matrix formalism. The field intensity within a photonic
crystal with a periodic triangular profile is evaluated as a function of penetration depth and wavelength.
These results are compared with the standard binary layered structures.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

An enhanced reflectivity and specific phase change upon re-
flection have been predicted for dielectric planes where the re-
fractive index derivatives are discontinuous [1]. This reflectivity
enhancement calculation was performed at normal incidence and
takes place even if the refractive index itself is continuous. The
reflectivity, at planes where the first order derivative is dis-
continuous, may reach values close to 1% if a convenient refractive
index profile is chosen. The phase change upon reflection is /2π± ,
the sign depends on whether the refractive index slope increases
or decreases [2]. In contrast, zeroth order derivative discontinuity
corresponds to the Fresnel reflection of a dielectric step function,
where reflectivities are around 4% (air–glass interface) and phase
changes upon reflection are 0 or π.

A periodic dielectric structure with triangular profile of the
refractive index has been studied analytically using a semiclassical
coupled wave theory [3]. An important advantage of wave solu-
tions is, as the authors rightly assert, their superior physical in-
sight. Recently, a sawtooth refractive index profile that en-
compasses the triangular profile has been exactly solved in terms
of Bessel functions using the transfer matrix method [4]. However,
the transfer matrix method does not lend itself to map the field or

the intensity throughout the material. The field distribution is
better represented in terms of Floquet–Bloch waves, since this
procedure permits the evaluation of the field as it propagates
through the periodic medium [5]. The light field distribution in
photonic crystal structures has also been tackled using Fermat's
principle [6,7]. 1D photonic crystals have important technological
applications in fast optical switching [8]. Graded multi-layer
structures open up the possibility of shaping the refractive index's
profile, and hence tailor the reflection properties to specific
designs.

The localized enhanced reflectivity due to the interface be-
tween two linear refractive indices with different slopes can be
increased by a sequence of such derivative discontinuities. The
triangular stack is the simplest scheme of this type. This triangular
structure is a good experimental candidate to observe the re-
flectivity enhancement and phase shift upon reflection due to
discontinuous first order derivatives.

In this communication, we explore the optical characteristics of
the triangular stack using different theoretical methods. In Section
2, the reflection coefficient of a derivative discontinuity plane is
derived in the amplitude and phase representation of waves. The
nonlinear amplitude equation can be solved in power series of the
slowly varying refractive index (SVRI) derivative, often called in
the physics community, the JWKB approximation. At the dis-
continuity planes, where this SVRI scheme is not valid, the solu-
tions at either side of the singularity are matched via field con-
tinuity conditions. In Section 3, the triangular stack is solved in the
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SVRI approximation. First, the complex reflection coefficients for
the two types of vertices needed to build up a triangular stack are
obtained. Section 3.1 gives a rule of thumb to evaluate the re-
flectivity of a triangular quarter wavelength stack. Whereas in
Section 3.2, the reflectivity as a function of incident wavenumber
is evaluated. The numerical solution to the nonlinear amplitude
equation, considering a triangular stack profile, is presented in
Section 4. Once the amplitude and phase representation of the
fields are understood in terms of an Ermakov pair, the im-
plementation of these types of solutions is straightforward. Field
intensity plots as a function of layer depth and wavelength can be
readily produced in this scheme. In Section 5, the procedure out-
lined by Morozov et al. [4] is performed. The exact solution is
compared with the amplitude numerical solution of the previous
section. In Section 6, the triangle stack is compared with standard
multilayer devices consisting of two alternating homogeneous
media. Conclusions are drawn in the last section.

2. Reflection coefficient evaluated from the amplitude
equation

Consider an isotropic, non-magnetic, transparent, dielectric
medium with a linear response and no free charges, stratified in
the z direction. Let the electric field E z eE e( ) i t

x= ^ω− represent
monochromatic plane waves polarized in the x direction and
propagation normal to the stratification planes. The non-autono-
mous ordinary differential equation (ODE) for the electric field is
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fractive index is equal to the square root of the relative permit-
tivity n z z( ) ( )/ 0ε ε= . The amplitude A(z) and phase z( )ϕ re-

presentation of the complex field is E z Ae( ) i= ϕ, where the ampli-
tude and phase are real functions. Inserting this ansatz in the field
equation leads to the nonlinear ordinary differential equation for
the electric field amplitude [9]:
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The electric field solution E z( ) is the total field at any propagation
position z. Whether there are counter-propagating waves or not
and in which ratio is not discernible at this stage. Correspondingly,
A(z) is the amplitude of the total field. The linearity of the field
ODE guarantees superposition of field solutions. For the amplitude,
it is necessary to invoke a nonlinear superposition principle in
order to compose two or more amplitude contributions [10]. In
one dimensional problems, the amplitude and phase functions are
related by the invariant:
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This invariant can be derived from the scalar wave equation when
a conservation equation is constructed from two linearly in-
dependent solutions [11]. The complementary fields associated
with these two solutions exchange energy in a dynamical equili-
brium both, in the time and spatial domains. In the one dimen-
sional degenerate case, the conserved quantity becomes a
constant.

Allow for an interval along the z-axis, where the medium is
homogeneous, i.e. constant n. Let the field solution be written as
the sum of two waves with opposite phase:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( )E z A i k nz A i k nz( ) exp exp , (4)0 0 0 0φ φ= + + − ++ + − −

where A+, A− are constant real amplitudes and ,0 0φ φ+ − are real
phase constants. Consider the semi-space where the wave is in-
cident. In this region, these counter-propagating waves can be
associated with the incident and reflected waves
E z E E( ) incident reflected= + . Evaluation of the field derivative (4) gives
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From these last two expressions, the reflected to incident fields
ratio r(z) can be expressed in terms of the total field E and its first
derivative [12]:
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where i stands for the imaginary unit. Alternatively, this ratio can
be written in terms of the squared amplitude A2 and its derivative
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where the invariant relationship (3) has been invoked. The ratio r
(z) is interpreted as the complex reflection coefficient at a given
plane of the incident semi-space. The square modulus of this
quantity is the reflectivity R rr= ⁎, it is constant in the incident
semi-space before reaching the reflecting surface.

The nonlinear amplitude equation (2) can be approximately
solved as a power series of the inverse wavenumber k0

1− for a
slowly varying refractive index (SVRI) but otherwise arbitrary
function n z( ) [13]:
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where only the even order terms are non-vanishing. The Am am-
plitude term retaining only the highest order derivative of the
refractive index is [2]
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for even m. Solutions with higher precision can be analytically
obtained by the evaluation of higher order terms in the slowly
varying refractive index series expansion. Care should be taken
with the convergence of the series. The field can then be evaluated
from the amplitude solution together with the phase via the in-
variant relationship (3). In order to obtain the reflectivity at a
discontinuity, the amplitude is evaluated just before and after the
singularity where n(z) is analytic and slowly varying. Continuity
conditions are imposed on these two amplitude solutions. The
complex reflection coefficient for an isolated non-vanishing dis-
continuity in the mth order derivative of the refractive index at z0
is given to first order by [2]
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where the light is incident from a medium where the refractive
index mth derivative just before the discontinuity is n zd /dm m

z0 δ−

and just after the discontinuity is n zd /dm m
z0 δ+ . The phase change

upon reflection can be obtained from (10) recalling that i em im /2= π .
The phase change can be summarized in the following
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