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a b s t r a c t

We theoretically investigate the mode-dependent characteristics of Rayleigh backscattering arising in
weakly-coupled few-mode fibers (FMFs). Based on the theory of Lorentz reciprocity and surface wave
excitation, we derive a general analytical equation of excitation efficiency and power distribution of
Rayleigh backscattering light among backward propagation modes under the condition of impulse re-
sponse. Thus, we are able to characterize the Rayleigh backscattering of weakly-coupled FMF with ar-
bitrary refractive index profile. As for the weakly-coupled FMF with a step-index profile, the power
distribution ratio of individual modes in the Rayleigh backscattering light is mainly determined by the
forward propagation mode. In particular, the backscattering mode with the same profile as the forward
propagation one has the highest excitation efficiency. The FMF parameters have influence on the total
backscattering power, but little effect on the mode power distribution ratio.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the prospect of capacity crunch in single mode fiber
(SMF) has stimulated worldwide interests in mode division mul-
tiplexing (MDM) using few-mode fiber (FMF), together with multi-
input multi-output (MIMO) signal processing technique[1, 2].
Rayleigh backscattering (RB) is an important characteristic of FMF
to be investigated, though it is rarely discussed in the literature. In
the FMF-based EDFA, the RB contributes to the mode dependent
gain fluctuations [3]. In Raman amplifiers (RAs), the multiple-path
interference noise due to the RB is one of dominant noises [4, 5].
Especially in the FMF-based RAs, the RB induces strong multiple-
path interference noise, resulting in the noise figure (NF) differ-
ence among propagation modes [6]. Meanwhile, as for the bidir-
ectional transmission in passive optical network (PON), the RB is
regarded as one of the dominant noise sources [7]. The eye dia-
gram of the upstream mode channel is not as clear as that of the
downstream mode channel partially due to the impact of RB when
MDM is used, limiting the reaching distance [8]. Furthermore, the
mode distribution of the RB light in the FMF has significant in-
fluence on the demonstration of measuring the mode coupling
property along the FMF using optical time-domain reflectometry
(OTDR) [9]. Without taking into consideration the RB light power
distribution among the fiber modes, the measured mode coupling

coefficient may deviate from the precise value. Generally, the RB in
optical fibers comes from the fiber structural fluctuations and has
been well investigated in SMF [10-12]. In order to calculate the
amplitude of backscattering light in the SMF, the field distribution
is usually approximated with a Gaussian function [10, 11]. Due to
the existence of few modes, such approximation becomes invalid
and the conclusions of SMF cannot be applied to the FMF. Some
researchers have explored the RB in multi-mode fibers (MMFs)
[13, 14]. The mode distribution of backscattering light in MMF is
experimentally found to be determined by the forward propaga-
tion mode [13]. Then, the RB in MMF is theoretically investigated
with an assumption of mode continuum [14]. In a strongly coupled
MMF, when the linewidth of optical source is wide enough, the
propagation constants are so close as to be treated as continuum
among degenerate mode groups. Obviously, such condition be-
comes invalid for the weakly-coupled FMF, whose effective index
difference between arbitrary linearly polarized (LP) modes is lar-
ger than 0.5�10�3 [15]. Currently, weakly coupled FMF is com-
monly used in MDM transmission system, due to the benefit of
receiver complexity reduction [16]. Thus, it is necessary to analyze
the mode-dependent characteristics of RB arising in weakly-cou-
pled FMF.

To the best of our knowledge, there exists no theoretical in-
vestigation of mode-dependent characteristics of RB in weakly-
coupled FMF. In this paper, based on the theory of Lorentz re-
ciprocity and surface wave excitation [17], we obtain a theoretical
expression of RB light under the condition of impulse response.
With numerical calculations, we find that the total Rayleigh
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backscattering power (TRBP) and the corresponding mode power
distribution ratio (MPDR) are determined by the forward propa-
gation mode. The FMF parameters have influence on the TRBP but
have little effect on the MPDR. The rest of the paper is organized as
follows. Section 2 describes the theoretical model to investigate
the mode-dependent characteristics of RB in weakly-coupled
FMFs. Section 3 discuss the variation of TRBP and MPDR with re-
spect to the FMF parameter with a step-index profile. The calcu-
lation results agree well with the RB characters of SMF, when the
FMF parameters are changed to only support the fundamental
mode. The main conclusions are summarized in section 4.

2. Theoretical model

The RB light occurs due to the inhomogeneities Δχ(x,y,z) of the
local electric susceptibility during the FMF drawing. The small scale
perturbation of permittivity Δε at the location (x,y,z) acts as a dipole
to scatter the input light. The model of equivalent dipole and surface
wave excitation is widely used in the RB investigation and is suitable
for any types of optical fibers [10, 11]. Thus, we start to investigate
the RB of weakly-guided weakly-coupled FMF with the same
method. The generated dipole current J can be described as,

i x y z i x y zJ E E( , , ) ( , , ) , (1)in in0ωΔε ωε Δχ= =

where ω is the angular frequency, Ein is the incident electric field.
We omit the time harmonic term exp(iωt) for the ease of discus-
sion. Taking the light scattering from a length element dz located
at into account, we can derive the field amplitudes amn

− of the
modes LPmn excited by the equivalent dipole according to the
Lorentz reciprocity theorem.
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Emn(x,y) and Hmn(x,y) are the transverse distributions of the
normalized electric and magnetic field in the cross section S, re-
spectively, and VS is the volume, dS1 is the surface element, dV is
the volume element of dS1dz. Assuming dz is small enough that the
amplitude of the forward mode can be regarded as a constant, we
can obtain the amplitude of backscattering light at LPmn mode.
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Eq. (3) can be further simplified as
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where nr(x,y,z) is the refractive-index fluctuation, Plp is the initial
power of the forward light at mode LPlp, lpα is the corresponding

attenuation coefficient, Alp
1/2− and Amn

1/2− are the normalized ampli-
tudes as shown in Eq. (5), emn(x,y) and elp(x,y) are the transverse
distributions of the electric field, μ and ε are the permeability and
permittivity, respectively.
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Since the RB is an intrinsic property of fiber, the input pulse
profile does not change the scattering characteristics of FMFs. For the

ease of discussion, we start our derivation on the condition of im-
pulse response [18]. The total power of the scattered light in LPmn

mode can be the integration of Eq. (4) in the longitudinal direction, as
shown in Fig. 1. Because the scattering elements are random, the
backscattering power is given by an ensemble average.
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where ESmn is the electric field of the backscattering light in LPmn

mode and PSlp-mn is its power, when the forward propagation
mode is LPlp mode. Here, we apply the Gaussian distribution
model to the refractive-index fluctuation, n x y z( , , )r [11]. For the
strongly-coupled FMF, the amplitude items inside the integration
components should include all the supported LP modes and
corresponding coupling interaction for the strongly-coupled FMF
and no theoretical expression can be obtained. Thus we deal with
the following derivation based on the weakly-coupled FMFs,
neglecting the effect of mode coupling when the backscattering
light propagates. And we reasonably neglected the coefficient /μ ε
for both the forward and the backward field, because we only care
about the RB power relative to the input impulse power. It is well
known that the electric field in FMF can be expressed as the
product of radial part and angular part as,

E x y E r r m( , ) ( , ) ( ) cos ( ) (7)mn mn mnθ φ θ= =

where (r, θ) is the polar coordinate, φmn(r) is the radial distribution
of transverse electric field. Substituting Eq. (4) and Eq. (7) into Eq.
(6), we obtain the backscattering power in LPmn mode as described
in Eq. (8) after mathematical derivation
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where the corresponding symbols and functions are defined as
follows
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Fig. 1. Schematic model of the infinite narrow pulse scatting in a FMF.

Table 1
Parameters of the Few-Mode Fibers

Item Core Radius
[μm]

n_cladding Δn [�10�3] λ [μm] lc nr
2

[�10�5]

1 8 1.45601 6.3�8.7 1.55 10 5.2
2 7.4�8.9 1.45601 7 1.55 10 5.2
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