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a b s t r a c t

We explore the exact optical similaritons of a generalized nonlinear Schrödinger equation (GNLSE) with
space–time modulated dispersion, nonlinearity, external potential and inhomogeneous source. It is
shown here that this equation appertains to the description of wave propagation through asymmetric
twin-core fibers in which we control the dynamics of the pulse propagating through passive fiber by
controlling the dynamics of the self-similar wave propagating through the active fiber, due to the linear
coupling between them. By utilizing multivariate similarity transformation, we map the nonautonomous
GNLSE to standard NLSE with a homogeneous external source. Furthermore, by using Möbius transfor-
mation, we find periodic waves, solitary waves, and pure cnoidal and pure snoidal solutions as exact
solutions. As an application, we explicate the mechanism to control the dynamical behaviors of these
similaritons for a spatial Airy and Bessel modulated nonlinearity.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

By now, it has been well established that the nonlinear
Schrödinger equation (NLSE) and its variants describe wave pro-
pagation through nonlinear optical fibers. Solitons which emerge
as the solutions of NLSE, due to a delicate balance between non-
linearity and dispersion or diffraction, are considered to be the
natural carriers of high-bit-rate information via long-haul tele-
communication networks [1]. Recently, there is a tremendous in-
terest in obtaining self-similar waves or similaritons for NLSE with
distributive parameters [2–6]. Self-similar waves are similar to
solitons with an added advantage of their modulating behaviors
both in the width and amplitude as a function of the length of the
fibers. More recently, there is a resurgence of interest in obtaining
space–time modulated self-similar waves that propagate self-si-
milarly subject to simple scaling rules in a nonlinear fiber [7–13].

Despite the fact that, it is easier to fabricate twin-core fibers
(TCF) with some built-in asymmetry, for example, in the geometry
and the material with which the cores of the two fibers (the core
of the passive fiber may be made of a material with normal dis-
persion and the active core may be made of a material with
anomalous dispersion) are made of, the study of nonlinear wave
propagation in these types of couplers has not received wide at-
tention in the literature. The author of the present paper has
studied dynamics of self-similar waves in TCF, where the relevant

equation is the NLSE interacting with an external source [14–18].
Additionally, nonautonomous matter waves in Bose–Einstein
condensates interacting with a spatially modulated external
source has been studied [19]. In this work, we intend to study the
propagation of space–time modulated self-similar waves in an
asymmetric twin core fiber, under Airy and Bessel modulated
nonlinearity. The model equation is NLSE with space–time
modulated dispersion, nonlinearity, external potential, and an
external source. Utilizing a multivariate similarity transformation,
we map the nonautonomous dynamical system to an autonomous
one [20–24]. Very recently, many authors have mapped different
variants of nonautonomous dynamical systems to autonomous
ones, and found interesting localized waves [25–33]. Then by
using one more transformation, we obtain an elliptic equation.
With the aid of Möbius transformation, we find periodic, solitary
wave, and pure cnoidal solutions as exact solutions. Although the
method described here has wide-spread applicability for studying
arbitrary modulations of the coefficients, in this work we confine
our study to delineate in more detail the dynamics of the self-
similar waves for which the nonlinearity is spatially modulated by
Bessel functions or Airy functions. The interest in NLSEs involving
Bessel functions either as a nonlinearity or as an external potential,
or both, has picked up after the appearance of nondiffracting
Bessel beams. The imperviousness of these beams to the diffrac-
tion or dispersion makes them as the much wanted wave packets
in nonlinear optics, involving long-haul telecommunication net-
works, where nondiffracting localized beams—solitons—
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commonly exist.

2. Model equation

The generalized nonlinear Schrödinger equation with space–
time modulated parameters may be written as
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Here, z x( , )β corresponds to the diffraction coefficient, z x( , )γ the
nonlinearity coefficient, R z x( , ) is the external potential, z x( , )ψ
corresponds to the complex envelope of the electric field, and

z x( , )η is the inhomogeneous source. Here, the phase Φ in the
source term contains the phase part of the wave that is propa-
gating through the passive fiber whose amplitude is contained in
η. Thus, we can control the signal that is propagating through the
passive fiber, by controlling the dynamical behavior of the signal
propagating via active fiber. First, we shall analyze our results
using the spatial modulation of the nonlinearity in the form

x a b Ai x c b Ai x c( ) ( [ ( )]) ( [ ( )]) , (2)0 0 0
2

0 0
2γ = + − + + + +

where a b,0 0 and c0 are constants, and Ai(x) is the Airy function.
Such a choice is realistic, because it avoids the appearance of
singularities. Next we shall consider the spatial modulation of the
nonlinearity in the form

x d J x( ) ( ), (3)n0
2γ = +

where d0 is a constant, Jn(x) is the n-th order Bessel function of
first kind and n is an integer or half-integer. The parameters
a b c, ,0 0 0 and d0 facilitate control over nonlinearity.

3. Similariton wave packets in asymmetric twin-core fibers

In order to obtain the exact analytical solutions of Eq. (1), use
shall be made of the following multivariate similarity transfor-
mation [3,10,13]:

z x A z x Q z X z x e( , ) ( , ) ( , ( , )) , (4)i B z x[ ( , )]ψ = Φ+

where the multivariate self-similar variable X z x( , ), the amplitude
AQ, and the combined phase BΦ + are all functions of z and x.
Writing the amplitude of ψ as a product of two auxiliary functions
allows for more freedom in the treatment of Eq. (1). The ultimate
aim is to transform nonautonomous Eq. (1) into the standard NLS
equation with constant coefficients. Substituting Eq. (4) into Eq.
(1), we may extract the following equation which is the NLSE with
a homogeneous external source:
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requiring that the following relations are satisfied:

z x X( , ) 1, (6)x
2β =

z x A( , ) , (7)2χ σ=

and

z x KA z x( , ) ( , ). (8)η =

Eq. (8) indicates that the space–time modulated external source is
proportional to the amplitude of the self-similar wave. Fig. 1
depicts this source for (a) Bessel nonlinearity for n 1, 2, 3= and

(b) Airy modulated nonlinearity. Now we separately assemble
terms containing Q and QX from the remaining terms of the
equation. Equating the coefficients of Q and QX to zero, we get
following system of
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From Eq. (9) we find
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where z( )λ is an integration constant. Substituting Eq. (13) into Eq.
(12) and also using Eq. (11) we obtain
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Eq. (6) leads to
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Substituting Eq. (15) into Eq. (14) we get

Fig. 1. Plot depicting the inhomogeneous source for (a) Bessel nonlinearity for
n 1, 2, 3= and (b) Airy nonlinearity.
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