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a b s t r a c t

A new method is proposed for testing standard quadric surfaces with several subapertures based on
interferometry. Subapertures arrangement, best-fit sphere calculation and distortion correction about
such surfaces are discussed in this paper. In addition, we provide an experimental demonstration by
testing a Ø310 mm convex hyperboloid mirror. The experimental result shows that the proposed method
can accomplish the testing of quadric mirrors without auxiliary compensation effectively. The analysis
and proposed methods bring much to the application of non-null aspheric testing.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Aspheric surfaces are widely used in a variety of optical systems to
improve the imaging quality with fewer optical elements. The com-
mon methods used for testing aspheric surfaces, such as the null
testing with compensator or CGH, will introduce extra errors from
auxiliary optics and need a high cost. Besides, for large aperture as-
pheric surfaces especially convex surfaces, the aperture of neither in-
terferometer nor the auxiliary optics is large enough to cover the full
aperture of the tested surfaces. A subaperture stitching method has
been developed to measure aspheric surfaces with low cost. The basic
idea of subaperture stitching method is to divide the tested surface
into several smaller subapertures, which can be tested with a standard
interferometer. After completing the measurement of each sub-
aperture, we get the full aperture map of the tested surface with re-
lative stitching algorithms.

The subaperture testing method was first introduced in 1980s
[1]. Many researchers have developed different stitching algo-
rithms. Obvious improvements can be observed from the Kwon–
Thunen method [2] and the simultaneous fit method [3], to the
discrete phase method [4,5], the optical null technique from QED
[6,7], and then to the maximum likelihood algorithm from Arizona

University [8,9]. Aiming to improving the efficiency of the stitch-
ing, we proposed a kind of stitching technique to test standard
quadric surfaces in non-null configuration. Advantages of the
technique were claimed and verified through experiments.

In this paper, we focus on the non-null testing technique for
standard quadric surfaces including the best-fit sphere calculation
to each subaperture, subapertures arrangement method of the full
aperture and distortion correction method. The stitching was ac-
complished with our previously mentioned algorithm [10]. The
stitching technique has also been applied to a Ø310 mm convex
hyperboloid mirror. This paper is organized as follows. In Section
2, the basic theory of stitching technique is introduced. In Section
3, we apply the above technique to the actual experiment and the
relative result is introduced. The conclusion is given in Section 4.

2. Theory

2.1. Calculation of best-fit spheres for subapertures

The sag of a standard quadric surface can be expressed as [11]
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where ccon is the conic' axial curvature and κ the conic constant.
For the off-axis section of rotationally symmetric surfaces, it can be
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regarded as part of the rotationally symmetric surface.
When calculating the best-fit sphere of a subaperture, for the

sake of conciseness, we just consider the subaperture whose
center is in the Y–Z plane shown in Fig. 1. The analysis is also
adapted to the subaperture whose center is not in the Y–Z plane,
as it can be regarded as a rotation result around the Z axis.

As shown in Fig. 1, the red line is the profile map of an as-
pherical mirror. ACB is the subaperture to be tested where point C

x y z( , , )c c c is the center of the subaperture. F is the center of the
best-fit sphere of subaperture ACB. The angle between FC and Z
axis is β . It is assumed that the tested area is rotationally sym-
metric around FC, which means 1γ ( AFC∠ ) is equal to 2γ ( BFC∠ ).

A spherical coordinate is established where F is the center and

FC
⎯ →⎯⎯

is the positive direction. A point P in the subaperture ACB can
then expressed as
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where h is the length of FC , r is the length of FP , θ and φ are the
zenith angle and azimuth angle respectively.

As the point P x y z( , , )p p p is in the subaperture ACB, it meets
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where p is the radius of curvature at the vertex of the aspheric
mirror p c( 1/ )con= .

Eq. (3) can be written as
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r can be calculated by
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Fig. 1. Sketch of non-null testing. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

Fig. 2. Test configuration of subaperture.

Fig. 3. Testing ring.
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