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a b s t r a c t

We present a simple numerical method for modeling an nth-order cascaded continuous wave fiber
Raman laser. The novelty of this model is the method by which power is transferred between waves,
which provides simplicity without the need for any approximations of the equations related to laser
dynamics, or simplification of the experimental arrangement. It was found that the results based on the
proposed method matches exactly with the results based on established techniques available in the
literature.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Lasers in the mid-IR spectral band are becoming increasingly
popular for their applications in trace gas sensing, spectroscopy
and medicine [1, 2]. Raman fiber lasers (RFLs), which are based on
stimulated Raman scattering (SRS) effects in optical fibers, enable
one to produce a laser at any desired wavelength [3–7]. In order to
develop a RFL, it is important to know several design parameters,
including the length and nonlinear properties of the Raman gain
fiber, as well as the reflectivity of the reflectors. In general, a
continuous wave (CW) cascaded RFL is described by a system of
coupled differential equations [8,9]. There are a number of tech-
niques and software packages available in order to solve the dif-
ferential equations. It is always challenging to obtain a solution
without any simplifying assumptions or a good guess values, and
in some cases the computation becomes very cumbersome with
increased number of Stokes orders [10–12].

In this article we proposed and demonstrated a simple tech-
nique to obtain optimum parameters required in developing a fi-
ber Raman laser using a finite difference method, considering the
interaction between forward and backward propagating waves.
The proposed technique was able to produce results reported in
the literature by AuYeung and Yariv, [13] Thielen et al., [14] and
Rini et al. [15]. We also presented theoretical results for a cascaded
RFL, where the optimal laser parameters were determined using
the proposed technique.

2. Numerical model

The pump and Stokes waves in an optical fiber evolve according
to equations given below [13]
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where G¼gR/Aeff (gR¼Raman gain coefficient and Aeff is the ef-
fective core area), PS (PP), ωS (ωP), and αs (αp) are power, frequency
and linear absorption coefficient for Stokes (pump) wave. Further,
the total number of photons (Eq. (2)) remains constant during the
SRS process [16]
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Fig. 1 shows a Raman fiber laser (RFL), which was formed using
fiber Bragg gratings. RFLs are described by a first-order system of
nonlinear two-point boundary value ordinary differential equa-
tions [8]. In the proposed technique, the resonant cavity was di-
vided into N number of sections, as shown in Fig. 2 [14]. The
power carried by each wave (forward and backward propagating
Stokes and pump) is represented by a one-dimensional array. The
individual array elements are denoted as P k t( , )i

± , where i denotes
the Stokes (S) or pump (P) wave, k is the spatial position (ranging
from 0 to N�1), 7 denotes forwards/backwards propagation di-
rections, and t is the number iteration. The progression in time is
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achieved by allowing the power to flow into neighboring ele-
ments, which corresponds to a length given as

z
L

N 1 (3)Δ =
−

where Δz is considered to be a positive quantity regardless of
direction of propagation. The spatial index (k) increases for for-
ward-propagating, and decreases for backward-propagating
waves. The solution of the pump wave (Eq. (1)) for a small value of
Δz (for which the change in power is also small) is given as
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Typically, a similar exponential solution is assumed for the
progression and growth of the Stokes wave [8]; however, this was
found to produce solutions which violated the conservation of
photon number (Eq. (2)) if implemented directly in numerical si-
mulations. In general, established methods require complex nu-
merical algorithms [17, 18] and/or dedicated problem solving
packages. In order to rectify this, we rearranged Eqs. (1) and (2),
and obtain Eqs. (5) and (6), the simplified form for the exchange of
power between various waves.
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Eq. (5) relates the amount of power gained by the Stokes waves
to the depleted pump power, and Eq. (6) shows how this power is
distributed between the forward and backward propagating
waves. Within a given cell, the power depleted from the pump
wave is calculated according to Eq. (4), and is transferred to the
Stokes wave according to Eq. (5). A new array is then required
which determines how this power from the pump is distributed
between the forward and backwards Stokes wave components
according to Eq. (6). The new array is called the power coupling

index, and is denoted by BS (k, t). The expression for the power
coupling index after the introduction of weighted time averaging,
which ensures convergence of the solution, is given as
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The (0.97)j term serves to give greater weight to recent itera-
tions in order to dampen self-reinforcing oscillations between
forward and backward Stokes waves. The specific value of 0.97 was
found using a brute-force search to provide the fastest con-
vergence in a wide variety of simulations, regardless of boundary
or initial conditions.

Using Eq. (7), we obtain expressions (Eqs. (8) and (9)) for the
growth of the forward and backward propagating Stokes waves.
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In order to run the simulation, a minimum value of Stokes
power was maintained in each cell, which acts as the seed. In
absence of the seed, the pump will propagate without generating
any Stokes power, depleted only by linear absorption. Special
consideration must be taken in implementing the boundary con-
ditions at the first and last elements, which are related to the re-
flectivity of the Bragg gratings and the input pump power (Fig. 2).
The input and output Bragg gratings can be considered as the

Fig. 1. Setup of a Raman fiber laser.

Fig. 2. Laser cavity with N number of sections of length Δz.

R.A. Drainville, G. Das / Optics Communications 340 (2015) 11–1512



Download English Version:

https://daneshyari.com/en/article/1534086

Download Persian Version:

https://daneshyari.com/article/1534086

Daneshyari.com

https://daneshyari.com/en/article/1534086
https://daneshyari.com/article/1534086
https://daneshyari.com

