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a b s t r a c t

We derive an expression for the far-zone scintillation index of electromagnetic beams that are generated
by quasi-homogeneous sources. By examining different types of sources, we find conditions under which
this index reaches its minimum or its maximum value. It is demonstrated that under certain
circumstances two sources with different spectral densities can produce beams with identical scintilla-
tion indices.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

When a beam-like electromagnetic field propagates in space its
coherence and polarization properties and its intensity typically
vary owing to the randomness of the source or the randomness of
the transmitting medium. In detection, the fluctuations of inten-
sity at the detector site are of particular interest. The contrast of
intensity fluctuations, or scintillation index, has been extensively
studied for beams propagating through random media such as the
turbulent atmosphere [1–4]. This is motivated by the fact that
efficient control and tailoring of the fluctuating intensity leads to
an improved performance (with a reduced noise level) of detection
systems. However, much less attention has been devoted to
intensity fluctuations that occur on free-space beam propagation.
We are only aware of two studies in which the evolution of the
scintillation index on free-space propagation was investigated
[5,6]. In those papers the analysis was restricted to so-called
Gaussian Schell-model beams [7, Chapter 9]. Because of applica-
tions such as coherence tomography and laser communication in
space, it is desirable to investigate the scintillation of beams that
arise from other types of sources.

A broad class of partially coherent beams are those that are
generated by quasi-homogeneous sources [7, Chapter 5]. These

sources are characterized by a spectral degree of coherence that is
homogeneous, meaning that it depends only on the separation of the
two spatial points at which it is evaluated, and by an intensity profile
that is a slowly varying function compared to the degree of
coherence. Scalar and electromagnetic quasi-homogeneous sources
and the fields they produce have been studied extensively, see, for
example [8–19].

In this work we study stochastic electromagnetic beams that
are generated by planar, secondary quasi-homogeneous sources
with Gaussian statistics. The assumption of Gaussian statistics is
applicable to many types of practical sources and it allows the
intensity fluctuations to be represented in terms of second-order
coherence quantities. An expression for the scintillation index
along the beam axis in the far zone is derived, and its conse-
quences are discussed by examining different examples. We
demonstrate, for instance, under which circumstances the scintil-
lation index takes on its minimum or its maximum value. In
addition, a connection is made between the scintillation index of
beams with Gaussian statistics and an electromagnetic degree of
coherence.

2. Quasi-homogeneous, planar electromagnetic sources

Consider a stochastic, statistically stationary, planar, secondary
source which produces an electromagnetic beam that propagates
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closely along the z-axis (see Fig. 1). The state of coherence and
polarization of the source field can be characterized, in the space–
frequency domain, by a 2�2 electric cross-spectral density matrix
[7, Section 9.1], namely

Wð0Þðρ1;ρ2;ωÞ ¼
W ð0Þ

xx ðρ1;ρ2;ωÞ W ð0Þ
xy ðρ1;ρ2;ωÞ

W ð0Þ
yx ðρ1;ρ2;ωÞ W ð0Þ

yy ðρ1;ρ2;ωÞ

0
@

1
A; ð1Þ

where

W ð0Þ
ij ðρ1;ρ2;ωÞ ¼ 〈En

i ðρ1;ωÞEjðρ2;ωÞ〉 ði; j¼ x; yÞ: ð2Þ

Here Eiðρ;ωÞ is a Cartesian component of the electric field
vector, at a point ρ and at frequency ω, of a typical realization of
the statistical ensemble representing the source, and the angled
brackets denote the ensemble average. The superscript ð0Þ indi-
cates quantities in the source plane z¼0. The spectral density of the
source field, Sð0Þðρ;ωÞ, is given by the expression

Sð0Þðρ;ωÞ ¼ trWð0Þðρ;ρ;ωÞ; ð3Þ

where tr denotes the trace. The four correlation coefficients of the
source field are defined as

μð0Þ
ij ðρ1;ρ2;ωÞ ¼

W ð0Þ
ij ðρ1;ρ2;ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W ð0Þ
ii ðρ1;ρ1;ωÞW ð0Þ

jj ðρ2;ρ2;ωÞ
q ði; j¼ x; yÞ: ð4Þ

These coefficients obey the relations 0r jμð0Þ
ij ðρ1;ρ2;ωÞjr1 for all

ρ1 and ρ2. Moreover, the equal-point values satisfy μð0Þ
ij ðρ;ρ;ωÞ ¼ 1

when i¼ j, since μð0Þ
xx ðρ1;ρ2;ωÞ and μð0Þ

yy ðρ1;ρ2;ωÞ are auto-
correlation functions, whereas for the cross-correlation functions
μð0Þ
ij ðρ1;ρ2;ωÞ, with ia j, the relation μð0Þ

ij ðρ1;ρ2;ωÞ ¼ μð0Þn
ji ðρ2;ρ1;ωÞ

holds and the quantities jμð0Þ
ij ðρ;ρ;ωÞj may take on any value

between 0 and 1.
In order to introduce a quasi-homogeneous, planar electro-

magnetic source we first assume that, at each frequency ω, the
source behaves as a Schell-model source (the concept of Schell's
model for scalar sources is discussed in [7, Section 5.3.1]). This
means that the correlation coefficients depend only on the posi-
tions ρ1 and ρ2 through the difference ρ2�ρ1, i.e.,

μð0Þ
ij ðρ1;ρ2;ωÞ ¼ μð0Þ

ij ðρ2�ρ1;ωÞ ði; j¼ x; yÞ: ð5Þ

In addition, the two spectral densities Sð0Þi ðρ;ωÞ ¼W ð0Þ
ii ðρ;ρ;ωÞ,

associated with each Cartesian component of the electric field,
are assumed to change much more slowly with ρ than the moduli
(absolute values) of the four correlation coefficients μð0Þ

ij ðρ2�ρ1;ωÞ
vary with ρ2�ρ1. If these two conditions are met, the electro-
magnetic source is said to be quasi-homogeneous.

It was recently shown that for such sources the elements of the
cross-spectral density matrix in the far zone are related to those
in the source plane by four so-called reciprocity relations [20].
Omitting the frequency-dependence for brevity, these relations

read

W ð1Þ
xx ðr1s1; r2s2Þ ¼ ð2πkÞ2 cos θ1 cos θ2

eikðr2 � r1Þ

r1r2

� ~S
ð0Þ
x ½kðs2? �s1? Þ� ~μð0Þ

xx ½kðs1? þs2? Þ=2�; ð6Þ

W ð1Þ
xy ðr1s1; r2s2Þ ¼ ð2πkÞ2 cos θ1 cosθ2

eikðr2 � r1Þ

r1r2

� ~S
ð0Þ
xy ½kðs2? �s1? Þ� ~μð0Þ

xy ½kðs1? þs2? Þ=2�; ð7Þ

W ð1Þ
yx ðr1s1; r2s2Þ ¼ ð2πkÞ2 cos θ1 cosθ2

eikðr2 � r1Þ

r1r2

� ~S
ð0Þ
xy ½kðs2? �s1? Þ� ~μð0Þn

xy ½kðs1? þs2? Þ=2�; ð8Þ

W ð1Þ
yy ðr1s1; r2s2Þ ¼ ð2πkÞ2 cos θ1 cosθ2

eikðr2 � r1Þ

r1r2

� ~S
ð0Þ
y ½kðs2? �s1? Þ� ~μð0Þ

yy ½kðs1? þs2? Þ=2�: ð9Þ

Here k¼ω=c is the wavenumber associated with frequency ω,
with c being the speed of light, and sp? , with p¼1,2, is the two-
dimensional projection of the directional unit vector sp onto the xy
plane. In these expressions the superscript ð1Þ indicates quantities
in the far zone of the source, and we have introduced the “off-
diagonal” spectral density

Sð0Þxy ðρÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þx ðρÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þy ðρÞ

q
: ð10Þ

The two-dimensional spatial Fourier transform ~S
ð0Þ
i ðfÞ of the

spectral density is defined as

~S
ð0Þ
i ðfÞ ¼ 1

ð2πÞ2
Z
z ¼ 0

Sð0Þi ðρÞe� if�ρ d2ρ; ð11Þ

with strictly analogous definitions for ~S
ð0Þ
xy ðfÞ and ~μð0Þ

ij ðfÞ. It is to be
noted that these reciprocity relations are generally valid for
electromagnetic beams generated by secondary, planar, quasi-
homogeneous sources. We will make use of these expressions in
the next sections.

3. Intensity fluctuations of stochastic electromagnetic beams

The fluctuation of the intensity of the field at an arbitrary point
r in the beam (at frequency ω) is defined as

ΔIðrÞ ¼ IðrÞ�SðrÞ; ð12Þ
where IðrÞ stands for the (random) intensity due to a single
realization of the field, and SðrÞ ¼ 〈IðrÞ〉 denotes the expectation
value, or ensemble average, of the intensity, as defined by Eq. (3).
On making use of Eq. (12) it follows at once that the correlation of
the intensity fluctuations at two points r1 and r2 is given by the
expression

〈ΔIðr1ÞΔIðr2Þ〉¼ 〈Iðr1ÞIðr2Þ〉�Sðr1ÞSðr2Þ: ð13Þ
The first term on the right-hand side of Eq. (13) contains a fourth-
order correlation function of the field. Under the assumption that
the fluctuations of the source are governed by Gaussian statistics,
one can use the Gaussian moments theorem [21, Section 1.6.1] to
derive that for random beams [21, Section 8.4]:

〈ΔIðr1ÞΔIðr2Þ〉¼∑
i;j

Wijðr1; r1Þ 2 ði; j¼ x; yÞ:
���� ð14Þ

Correlation of intensity fluctuations of this kind in beams gener-
ated by quasi-homogeneous sources has recently been examined
[22]. It is further of interest to note that if the quantity on the
right-hand side of Eq. (14) is normalized by the mean values of
the intensities at points r1 and r2, one obtains the square of the

z = 0

O. z

r = rs

θ
ρρ

Fig. 1. Illustrating the notation. The origin O of a right-handed Cartesian coordinate
system is taken in the plane of a quasi-homogeneous source that generates an
electromagnetic beam that propagates along the z-axis. Source points are indicated
by the vector ρ¼ ðx; yÞ. The position of a point in the far zone is denoted by the
vector r¼ rs. The unit vector s makes an angle θ with the positive z-axis.
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