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a b s t r a c t

We report that surface defect lattice solitons (SDLSs) can be supported at the interface between the
photonic lattices with a defect and the uniform photovoltaic-photorefractive (PP) crystal. We show that
these SDLSs exist only in the semi-infinite gap when the defect is positive and both in the semi-infinite
gap and the first gap when the defect is negative. For a positive defect, SDLSs are stable in the high and
low power regions and unstable in the moderate power region. For a negative defect, SDLSs in the semi-
infinite gap are stable in the moderate power region and unstable in the high and low power regions. In
the first gap, SDLSs are stable in the all power regions. We find that the stable region of SDLSs increases
with the positive defect strength and decreases with an increase in the negative defect strength and the
power of SDLSs decrease with an increase in the positive defect strength and increase with the negative
defect strength.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Light propagation in periodic optical systems such as wave-
guide arrays, photonic crystals, and optically-induced photonic
lattices has attracted substantial research interest due to its
physics and light-routing applications. In such periodic systems,
linear light propagation exhibits Bloch bands and forbidden
bandgaps. Gap solitons can exist in different bandgaps and form
by the nonlinear coupling between forward- and backward-
propagating waves when both experience Bragg scattering from
the periodic structures. To date, a wide variety of gap solitons in
different gaps are known: fundamental solitons [1–7], dipole
solitons [8,9], vortex solitons [10–12], quadrupole solitons [13],
and defect solitons [14–19], all of which form in bulk periodic
mediums. Gap solitons may also exist at periodically modulated
surfaces [20]. Surface solitons at the interface between the uni-
form media and the periodic waveguide arrays [21–26], at the
interface of two periodic media [27–30], and at the interface
between the photonic lattices and the uniform photorefractive
crystals [31,32] have been proposed and observed. On the other
hand, the interface with a defect can support surface solitons
[33,34]. Surface defect lattice solitons (SDLSs) in biased non-
photovoltaic-photorefractive crystals have been predicted [35].
Therefore, it would be of interest to explore whether SDLSs can
be realized at the interface between the photonic lattices with a

defect and the uniform photovoltaic-photorefractive (PP) crystals
as well.

In this paper, we show that SDLSs are possible at the interface
between the photonic lattices with a defect and the uniform PP
crystals. These SDLSs exist in different bandgaps due to the change
of defect strength. For a positive defect, SDLSs exist only in the
semi-infinite gap and are stable in the high and low power regions
but unstable in the moderate power region. For a negative defect,
SDLSs exist in the semi-infinite and first gaps. In the semi-infinite
gap, SDLSs are stable in the moderate power region but unstable in
the high and low power regions. In the first gap, SDLSs are stable
in the all power regions. On the other hand, the surface defect of
photonic lattices can affect the properties of SDLSs. When the
defect strength is increased, the stable region of SDLSs is extended
for a positive defect and narrowed for a negative defect, and the
power of SDLSs decreases with an increase in the positive defect
strength and increases with the negative defect strength.

2. Theoretical model

Let us consider the physical situation in which an ordinarily
polarized beam through a mask is launched into a PP crystal. The
mask can control the distribution of optical intensity that forms
the interface between the photonic lattices with a defect and the
uniform PP crystal. Here such a defect resides in the interface.
Meanwhile, an extraordinarily polarized probe beam is launched
into the defect site, propagating along the interface with a defect.
In this situation, the nondimensionalized equation for the probe
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beam is [15,17,36]
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Here q is the slowly varying amplitude of the probe beam, z is the
normalized longitudinal coordinate (in units of 2kD2=π2), x is the
normalized transverse coordinate (in units of D=π), IL is the
intensity function of the photonic lattices described by

IL ¼
I0 cos 2ðxÞ½1þεgðxÞ�; xZ�π=2
0; xo�π=2

;

(
ð2Þ

E0 ¼ k2n2
e r33D

2Ep=π2, D is the lattice spacing, k¼ 2πne=λ is the
optical wave number in the PP crystal, λ is the wavelength, ne is the
unperturbed extraordinary index of refraction, r33 is the electro-
optic coefficient, Ep is the photovoltaic field constant, I0 is the
lattice peak intensity normalized by the dark irradiance Id, g(x)
is a localized function describing the shape of the defect, and
ε controls the strength of the defect. Such lattices described by
Eq. (2) produce the interface with a defect inside PP crystals,
which can support surface waves. At this point, we assume that
the defect is restricted to a single lattice site at x¼0. We choose
function g(x) as gðxÞ ¼ expð�x8=128Þ and take �1rεr1. For a
positive defect ε40, the lattice light intensity IL at the defect site is

higher than that without defect. For a negative defect εo0, the
lattice intensity IL at the defect site is lower than that without
defect. For ε¼ 0, the photonic lattices are uniform, as shown in
Fig. 1(b). In this paper, let us consider a BaTiO3 PP crystal with the
following parameters ne¼2.365, r33 ¼ 80� 10�12 m=V, and
Ep ¼ 5 KV=cm at a wavelength λ¼ 0:5 μm. If D¼ 20 μm, we find
that E0 � 8 and that one x unit corresponds to 6.4 μm and one z
unit corresponds to 2.4 mm in physical units.

In order to show the existent conditions for SDLSs, we look for
Floquet-Bloch spectrum by substituting q¼ f ðxÞexpðikxx� iμzÞ into
the linear version of Eq. (1) with ε¼0, and obtain eigenfunction
equation as follow

d2f

dx2
þ2ikx

df
dx

�k2x f þE0
IL

1þ IL
f ¼ �mf ; ð3Þ

where f(x) is the complex periodic function with the same
periodicity as the lattices, kx is wave number in the first Brillouin
zone, and μ is the Bloch-wave propagation constant. We calculate
Eq. (3) by the plane wave expansion method to obtain the bandgap
diagram. Fig. 1(a) and (b) show the bandgap structure of the
uniform photonic lattices when I0 ¼ 3 and the corresponding
intensity distribution of the uniform photonic lattices, respec-
tively. It reveals that there exist four complete gaps which are

Fig. 1. (a) Photovoltaic field parameter E0 versus the propagation constant μ; the shaded regions are Bloch bands. (b) Lattice intensity profiles with I0 ¼ 3 when ε¼ 0.

Fig. 2. (a) Power P versus propagation constant μ (shaded regions are Bloch band) at I0 ¼ 3 and E0 ¼ 8 when ε¼ 0:3 (dash-dot curve) and 0.7 (solid curve). (b) Perturbation
growth rates ReðδÞ versus the propagation constant μ when ε¼ 0:3 (dash-dot curve) and 0.7 (solid curve). In (a), the solid and dash-dot curves indicate the stable SDLSs, and
the dotted curves indicate the unstable SDLSs, see (b). Profiles of SDLSs at the circled points in (a) and (b) are displayed in Fig. 3.
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